Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T12:22:30.776Z Has data issue: false hasContentIssue false

Radiocarbon calibration for the Middle/Upper Palaeolithic: a comment1

Published online by Cambridge University Press:  02 January 2015

J. van der Plicht*
Affiliation:
Centrum voor Isotopen Onderzoek, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © Antiquity Publications Ltd. 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

BP: 14C ages are reported in BP (Before Present), where Present is defined as 1950 (the ‘standard year’). BP ages are calculated from 14C activities or concentrations as measured by proportional counters, liquid scintillators or Accelerator Mass Spectrometry; by definition, BP includes a correction for isotopic fractionation by means of a measurement of the stable carbon isotope 13C, expressed in 13δ.

BC, AD: historical times (siderial years).

cal BC, cal AD: 14C ages, calibrated into historical ages.

cal BP: for 14C: calibrated before 1950, i.e. cal BP = 1950-cal AD. Also: siderial years before 1950, used for chronologies of ice cores, deep sea cores and laminated sediments.

14Δ: denotes the atmospheric 14CO2 content, expressed as the per mil deviation of the 14 content defined by the international standard (‘1950’) after correction for fractionation and radioactive decay (Stuiver & Polach 1977).

References

Aldahan, A. & Possnert, G.. 1998. A high resolution 10Be profile from deep sea sediment covering the last 70 ka : indication for globally synchronized environmental events, Quaternary Geochronology 17: 102332.Google Scholar
American Geophysical Union (AGU). 1997. Greenland Summit ice cores: GISP2 and GRIP, Journal of Geophysical Research 102(C12): 26,315886.Google Scholar
Andel, T.H. Van, 1998. Middle and Upper Palaeolithic environments and the calibration of 14C dates beyond 10,000 BP, Antiquity 72: 2633.Google Scholar
Bard, E., 1997. Nuclide production by cosmic rays during the last ice age, Science 277: 5323.Google Scholar
Bard, E., Arnold, M. Fairbanks, R.G. & Hamelin, B.. 1993. 230Th-234U and 14C ages obtained by mass spectrometry on corals, Radiocarbon 35: 191200.CrossRefGoogle Scholar
Baumgartner, S. Beer, J. Masarik, J. Wagner, G. Meynadier, L. & Synal, H.-A.. 1998. Geomagnetic modulation of the 3BC1 flux in the GRIP ice core, Greenland, Science 279:133032.CrossRefGoogle Scholar
Beer, J., Johnsen, S.J. Bonani, G. Finkel, R.C. Langway, C.C. Oeschger, H. Stauffer, B. Suter, M. & Wólfli, W.. 1992. 10Be peaks as time markers in polar ice cores, in: Bard, E. & Broecker, W.S. (ed.), The last deglaciation: absolute and radiocarbon chronologies: 14153. Berlin: Springer-Verlag. NATO ASI series.Google Scholar
Castagnoli, G.C., Albrecht, A. Beer, J. Bonino, G., Chen Shen Callegari, E. Taricco, C. Dittrich-Hannen, B. Kubik, P. Suter, M. & Zhu, G.M.. 1995. Evidence for enhanced 10Be deposition in Mediterranean sediments 35 kyr BP. Geophysical Research Letters 22: 70710.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J. Clausen, H.B. Dahl-Jensen, D. Gundestrup, N.S. Hammer, C.U. Hvidberg, C.S. Stefensen, J.P. Sveinbjorndottir, A.E. Jouzel, J. & Bond, G.. 1993. Evidence for general instability in past climate from a 250 kyr ice-core record. Nature 364: 218220.Google Scholar
Frank, M., Schwarz, B. Baumann, S. Kubik, P.W. Suter, M. & Mangini, A.. 1997. A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments, Earth and Planetary Science Letters 149: 1219.Google Scholar
Grootes, P.M., Stuiver, M. White, J.W.C. Johnsen, S. & Jouzel, J., 1993. Comparison of oxygen records from the GISP2 and GRIP Greenland ice cores, Nature 366: 5524.Google Scholar
Guyodo, Y. & Valet, J.-P., 1996. Relative variations in geomagnetic intensity from sedimentary records: the past 200,000 years, Earth Planetary Science Letters 143: 2336.Google Scholar
Kitagawa, H. & Van Der Plicht, J.. 1998. Atmospheric radiocarbon calibration to 45,000 yr BP: late glacial fluctuations and cosmogenic isotope production, Science 279: 118790.Google Scholar
Lai, C.,Mazaud, A. & Duplessy, J.-C.. 1996. Geomagnetic intensity and 14C abundance in the atmosphere and ocean during the past 50 kyr, Geophysical Research Letters 23: 20458.Google Scholar
Liddicoat, J.C. 1992. Mono Lake excursion in Mono Basin, California, and at Carson Sink and Pyearamid Lake, Nevada, Geophysical Journal International 108: 44252.Google Scholar
McHargue, L.R., Damon, P.E. & Donahue, D.J. 1995. Enhanced cosmic-ray production of 10Be coincident with the Mono Lake and Laschamp geomagnetic excursions, Geophysical Research Letters 22: 65962.CrossRefGoogle Scholar
Raisbeck, G.M., Yiou, F. Bourles, D. Lorius, C. Jouzel, J. & Barkov, N.I.. 1987. Evidence for two intervals of enhanced 10Be deposition in Antarctic ice during the last glacial period, Nature 326: 273.Google Scholar
Stuiver, M. & Polach, H.A.. 1977. Discussion — reporting of 14C data, Radiocarbon 19: 35563.Google Scholar
Stuiver, M.,Long, A. & Kra, R.S. (ed.). 1993. Calibration Issue, Radiocarbon 35(1).Google Scholar
Stuiver, M. & Van Der Plicht, J. (ed.). 1998. INTCAL98 calibration issue, Radiocarbon 40(3).Google Scholar
Vlac, P., Thouveny, N. Williamson, D. Rochette, P. & Benatig, F.. 1996. Evidence for a geomagnetic excursion recorded in the sediments of Lac St. Front, France: a link with the Laschamp excursion? Journal of Geophysical Research 101(B12): 28,21130.Google Scholar
Voelker, A.H.L., Sarntheim, M. Grootes, P. Erlenkeuser, H. Laj, C. Mazaud, A. Nadeau, M.-J. & Schleicher, M.. 1998. Calibration of 14C ages in deep-sea core PS2644 from the icelandic sea to GISP2 ice-core calendar ages over the interval 25–50 kyr ago, Radiocarbon 40(1): 51734.CrossRefGoogle Scholar
Vogel, J.C. & Kronfeld, J.. 1997. Calibration of radiocarbon dates for the late pleistocene using U/Th dates on stalagmites, Radiocarbon 39: 2732.Google Scholar
Woillard, G.M. & Mook, W.G.. 1982. Carbon-14 dates at Grande Pile: correlation of land and sea chronology, Science 215: 15961.Google Scholar
Yiou, F.G. Raisbeck, M. Baumgartner, S. Beer, J. Hammer, C. Johnsen, S. Jouzel, J. Kubik, P.W. Lestringuez, J. Stiévenard, M. Suter, M. & Yiou, P.. 1997. Beryllium 10 in the Greenland ice core project ice core at Summit, Greenland, Journal of Geophysical Research 102(C12): 26,78394.Google Scholar