Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T21:23:24.143Z Has data issue: false hasContentIssue false

Prehistoric land degradation in Hungary: who, how and why?

Published online by Cambridge University Press:  02 January 2015

K. J. Willis
Affiliation:
Godwin Laboratory, University of Cambridge, Free School Lane, Cambridge CB2 3RS, England [email protected]
P. Sümegi
Affiliation:
Department of Mineralogy & Geology, Kossuth Lajos University, Debrecen H-4010, Hungary
M. Braun
Affiliation:
Department of Mineralogy & Geology, Kossuth Lajos University, Debrecen H-4010, Hungary
K. D. Bennett
Affiliation:
Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, England
A. Tóth
Affiliation:
Department of Mineralogy & Geology, Kossuth Lajos University, Debrecen H-4010, Hungary

Abstract

The recent study of Kis-Mohos Tó lake in Hungary reveals an important sequence of prehistoric landscape changes from the earliest land clearance to the early Middle Ages. The recognition of land degradation, through the application of new analytical methods, forms an important part of the discussion.

Type
Papers
Copyright
Copyright © Antiquity Publications Ltd. 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archibold, O.W. 1995. Ecology of world vegetation. London: Chapman & Hall.Google Scholar
Barrow, C.J. 1991. Land degradation. Cambridge: Cambridge University Press.Google Scholar
Bell, M. & Walker, M.J.C. 1992. Late Quaternary environmental change. London: Longman Group.Google Scholar
Bennett, K.D., Simonson, W.D. & Peglar., S.M. 1990. Fire and man in Post-Glacial Woodlands of Eastern England, Journal of Archaeological Science 17: 63542.Google Scholar
Beug, H.J. 1982. Vegetation history and climatic changes in central and southern Europe, in Harding, A.F. (ed.), Climatic change in later prehistory: 85102. Edinburgh: Edingburgh University Press.Google Scholar
Behre, K.E. 1988. Some reflections on anthropogenic indicators and the record of prehistoric occupation phases in pollen diagrams from the Near East, in Huntley, B. & Webb, T. III (ed.), Vegetation History: 63372. Dordretcht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Bjorkman, L. & Bradshaw., R. 1996. The immigration of Fagus Sylvatic L. and Picea abies (L.) Karst, into a natural forest stand in southern Sweden during the last 2000 years, Journal of Biogeography 23: 23544.CrossRefGoogle Scholar
Bona, I. 1975. Die mittlere Bronzezeit Ungarns Und Ihre Südöstlichen Beziehungen. Budapest: Akadémiai Kiadó.Google Scholar
Bona, I. 1976. The dawn of the dark ages. The Geids and the Lombards in the Carpathian basin. Budapest: Corvina Kiadó.Google Scholar
Bona, I. 1991. Das Hunnenreich. Budapest: Corvina Kiadó.Google Scholar
Bona, I. 1992. Bronzezeitliche Tell-Kulturen in Ungarns, in Fodor, J., Meier-Arendt, W. & Racky, P. (ed.), Bronzezeit in Ungarn Forschungen in Tell-Siedlungen an Donau und Theiss: 939. Szolnok: Museum Szolnok.Google Scholar
Bradshaw, R., Coxon, P., Greig, J. & Hall., A. 1981. New fossil evidence for the past cultivation and processing of hemp in eastern England, New Phytologist 89: 50310.Google Scholar
Bradshaw, R. & Webb., T. 1985. Relationships between contemporary pollen and vegetation data from Winconsin and Michigan, USA, Ecology 66: 72137.CrossRefGoogle Scholar
Clark, J.S. 1988a. Effect of climatic change in fire regimes in northwestern Minnesota, Nature 334: 2335.CrossRefGoogle Scholar
Clark, J.S. 1988b. Particle motion and the theory of charcoal analysis: source area, transport, deposition and sampling, Quaternary Besearch 30: 6780.Google Scholar
Davidson, D.A. 1980. Erosion in Greece during the first and second millennia BC, in Cullingford, R.A., Davidson, D.A. & Lewin, J. (ed.), Timescales in Geomorphology: 14358. Chicester: Wiley.Google Scholar
Dimbleby, G.W. 1984. Anthropogenic changes from Neolithic through Medieval times, New Phytologist 98: 5772.CrossRefGoogle ScholarPubMed
Edwards, K.J. 1991. Using space in cultural palynology: the value of the off-site pollen record, in Harris, D.R. & Thomas, K.D. (ed.), Modelling ecological change: 522. London: Institute of Archaeology Publications.Google Scholar
Edwards, K.J. 1993. Models of mid-Holocene forest farming in northwest Europe, in Chambers, F.M. (ed.), Climate change and human impact on the landscape: 13344. London: Chapman & Hall.Google Scholar
Ellenberg, H. 1988. Vegetation ecology of Central Europe. Cambridge: Cambridge University Press.Google Scholar
Ellis, S. & Mellor., A. 1995. Soils and Environment. London & New York (NY): Routledge.Google Scholar
Engstrom, D.R. & Wright, H.E. Jr., 1984. Chemical stratigraphy of lake sediments as a record of environmental change, in Haworth, E.Y. & Lund, J.W.G. (ed.), Lake sediments and environmental history: 1169. Minneapolis (MN): University of Minnesota Press.Google Scholar
Evans, R. 1990. Soil erosion: its impact on the English and Welsh landscape since woodland clearance, in Boardman, J., Foster, I.D.L. & Dearing, J.A. (ed.), Soil erosion on agricultural land: 23154. Chichester: Wiley.Google Scholar
Flenley, J.R. 1988. Palynological evidence for land use changes in south-east Asia, Journal of Biogeography 15: 18597.Google Scholar
Gardner, A.R. & Willis, K.J. In preparation. Prehistoric farming and the postglacial expansion of beech and hornbeam: a comment on Küster, The Holocene.Google Scholar
Gyürffy, G.Y. 1963. Historical geography of hungary in Árpád era I. Budapest: Akadémiai Kiadó. (In Hungarian.)Google Scholar
Gyürffy, G.Y. 1987. Historical geography of hungary in Árpád era II. Budapest: Akadémiai Kiadó. (In Hungarian.)Google Scholar
Gyulai, I. 1995. The Mohos lakes at Kelemér, Természet Világa 126: 1378. (In Hungarian.)Google Scholar
Haeggstrom, C.A. 1992. Wooded meadows and the use of deciduous trees for fodder, fuel, carpentry and building purposes, Protoindustries et histoire des forêts: 13162. Toulouse: GDR ISARD-CNRS.Google Scholar
Heathwaite, L. & burt., T. 1992. The evidence for past and present soil erosion in the Slapton catchment, southwest Devon, in Bell, M. & Boardman, J. (ed.), Past and present soil erosion: 98100. Oxford: Oxbow.Google Scholar
Hertelendi, E., Kalicz, N., Raczky, N., Horváth, P., Veres, F., Svingor, M., Futó, É. & Bartosiewicz., L. 1996. Re-evolution of the Neolithic in eastern Hungary based on calibrated radiocarbon dates, Radiocarbon 37: 23944.Google Scholar
Iversen, J. 1941. Landnam i Denmarks stenalder [Land occupation in Denmark’s Stone Age], Danmarks Geologiske Undersøgelse 66: 168.Google Scholar
Jackson, S.T. 1990. Pollen source area and representation in small lakes of the northeastern United States. Beview of Palaeobotany and Palynology 63: 53-76.Google Scholar
Jackson, S.T. 1994. Pollen and spores in Quaternary lake sediments as sensors of vegetation composition: theoretical models and empirical evidence, in Traverse, A. (ed.), Sedimentation Of Organic Particles: 25386. Cambridge: Cambridge University Press.Google Scholar
Jacobson, G.L. Jr., & Bradshaw., R.H.W. 1981. The selection of sites for paleovegetational studies, Quaternary Research 16: 8096.Google Scholar
Jahns, S. 1993. On the Holocene vegetation history of the Argive Plain (Peloponnese, southern Greece), Vegetation History and Archaeobotany 2: 187203.Google Scholar
Kalicz, N. 1968. Die Frühbronzezeit in Nordost-Ungarn. Budapest: Akadémiai Kiadó.Google Scholar
Kalicz, N. 1970. Clay God:. The Neolithic period and the Copper Age in Hungary. Budapest: Hereditas Kiadó.Google Scholar
Kalicz, N. 1984. Die Makó Kultur. Die Nyiíség Kultur. Die Hatvan Kultur, in Novotny et al. (ed.): 191219.Google Scholar
Kalicz, N. & Makkay., J. 1977. Die Linienbandkeramik in der Grossen Ungarischen Tiefebene, Stadia Archeologica 7.Google Scholar
Kemenczei, T. 1970. Kyjatice Culture in Northern Part of Hungary Hermann Ottó Múzeum Évkönyve 9: 1778. (In Hungarian.)Google Scholar
Kemenczei, T. 1984. Die Späthronzezeit Nordostungarns. Budapest: Akadémiai Kiadó.Google Scholar
Kemenczeiné Végh, K. 1971. Sarmatian finds in Hermann Ottó Museum at Miskloc, Hermann Ottó Múzeum Évkönyve 11: 87114. (In Hungarian.)Google Scholar
Kemenczeiné Végh, K. 1975. Archaeological data from I-IV centuries history of North Hungary, Hermann Ottó Múzeum Évkönyve 13/14: 65130. (In Hungarian.)Google Scholar
Küster, H. 1988. Beziehungen zwischen der Landnutzung und der Deposition von Blei und Cadmium in Torfen am Nordrand der Alpen, Natur Wissenschaften 75: 61113.Google Scholar
Korek, J. & Patay., P. 1958. The distribution of Bükk Culture in Hungary. Budapest: Régészeti Füzetek. (In Hungarian.)Google Scholar
Kosse, K. 1979. Settlement ecology of the Körös and Linear Pottery Cultures in Hungary’. Oxford: British Archaeological Reports. International series 64.Google Scholar
Kovács, L. 1994. Conquest and Archaeology. Budapest: Corvina Kiadó. (In Hungarian.)Google Scholar
Kovács, T. 1977. The Bronze Age in Hungary. Budapest: Hereditas Kiadó.Google Scholar
Kovács, T. 1984. Die Füzesabony Kultur, in Kulturen Der Frühbronzezeit Das Karpatenbeckens Und Nordbalkans, in Novotny, et al. (ed.): 23556.Google Scholar
Lichardus, J. 1974. Studien zur Bükker Kultur, Saarbrücker Beiträge Zur Altertumskunde 12.Google Scholar
Loczy, D. 1988. Cultural landscape histories in Hungary — two case studies in Birks, H.H., Birks, H.J.B., Kaland, P.E. & Moe, D. (ed.). The cultural landscape: past, present and future: 16576. Cambridge: Cambridge University Press.Google Scholar
Makkay, J. 1982. New results in the research of the Hungarian Neolithic. Budapest: Akadémiai Kiadó. (in Hungarian.)Google Scholar
Novotny, B., Kalicz, N., Brukner, N. & Tasic, N. (Ed.). 1984. Kulturen Der Frühbronzezeit Das Karpatenbeckens Und Nordbalkans. Beograd: Balkanolo$$ki Institut Sanu.Google Scholar
Patek, E. 1973. Bericht über die Ausgrabung des Späfbronzezeitlichen Burgwalles von Töröksánc bei Szilvásvárad, Mitteilungen Des Archäologischen Instituts Der Ungarischen Akademie Der Wissenschaften 4: 2730.Google Scholar
Patterson, W.A., edwards, K.J. & macguire., D.J. 1987. Microscopic charcoal as a fossil indicator of fire, Quaternary Science Reviews 6: 323.Google Scholar
Rackham, O. 1980. Ancient Woodland. London: Edward Arnold.Google Scholar
Raczky, p., Hertelendi, E. & Hovarth., F. 1992. Zur absoluten Datierung der bronzezeitlichen Tell Kulturen in Ungarn, in Fodor, J., Meier-Arendt, W. & Racky, P. (ed.), Bronzezeit in Ungarn Farschungen in Tell-Siedlungen an Donau und Theiss: 939. Szolnok: Damjanich Museum.Google Scholar
Sherratt, A. 1981. Plough and pastoralism: aspects of the Secondary Products Revolution, in Hodder, I., Isaac, G. & Hammond, N. (ed.), Pattern of the past: studies in honour of David Clarke: 261305. Cambridge: Cambridge University Press.Google Scholar
Sherratt, A. 1982. The development of Neolithic and Copper age settlement in the Great Hungarian Plain. Part I: The regional setting, Oxford Journal of Archaeology 1: 287316.Google Scholar
Sherratt, A. 1983. The development of Neolithic and Copper age settlement in the Great Hungarian Plain. Part II: site survey and settlement dynamics, Oxford Journal of Archaeology 2: 1341.Google Scholar
Stuiver, M. & Reimer., P.J. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program, Radiocarbon 35: 21530.Google Scholar
Szabó, I. 1971. village-system development in hungary (X-XV century). Budapest: Akadémiai Kiadó.. (In Hungarian.)Google Scholar
Szabó, M. 1971. The Celtic Heritage in Hungary. Budapest: Hereditas Kiadó.Google Scholar
Trogmayer, O. 1980. Pannonia before the Roman Conquest, in Lengyel, A.G. & Radan, G.T. (ed.), The archaeology of Roman Pannonia: 6582. Kentucky: Kentucky University Press.Google Scholar
Van Der Leeuw, S. 1995. L’homme et la dégradation de l’environnement. Sophia Antipolis, France: Éditions APDCA.Google Scholar
Whitlock, C. & Millspaugh., S.H. 1996. Testing the assumptions of fire-history studies: an examination of modern charcoal accumulation in Yellowstone National Park, USA, The Holocene 6: 715.Google Scholar
Whittington, G. & Edwards., K.J. 1990. The cultivation and utilisation of hemp in Scotland, Scottish Geographical Magazine 106: 16773.Google Scholar
Willis, K.J. 1994. The vegetational history of the Balkans, Quaternary Science Reviews 13: 76988.CrossRefGoogle Scholar
Willis, K.J. 1995. Land degradation in the Balkans: variations in time and space, in van der Leeuw, S. (ed.), L’homme et la dégradations de l’environnement, 16174. Juan-les-Pins: é1ditions APDCA.Google Scholar
Willis, K.J. 1996. The pollen-sedimentological evidence for the beginning of agriculture in southeastern Europe and Anatolia, Porocilo o raziskovanju paleolitika, neolitika in eneolitika v Sloveniji XXII: 924.Google Scholar
Willis, K.J. & Bennett., K.D. 1994. The Neolithic transition — fact or fiction? Palaeoecological evidence from the Balkans, The Holocene 4: 32630.Google Scholar
Willis, K.J., Braun, M., Sümegi, P. & Tóth., A. 1997. Does soil development cause vegetation change or vice versa? A temporal perspective from Hungary, Ecology 78: 73040.CrossRefGoogle Scholar
Willis, K.J., Sümegi, P., Braun, M. & Tóth., A. 1995. The late Quaternary environmental history of Batorliget, Hungary, N.E., Palaeogeography, Palaeoclimatology, Palaeoecology 118: 2547.Google Scholar