Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-06T03:32:09.909Z Has data issue: false hasContentIssue false

Ice-cores, sediments and civilisation collapse: a cautionary tale from Lake Titicaca

Published online by Cambridge University Press:  10 March 2015

Michael J. Calaway*
Affiliation:
Department of Geological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA (Email: [email protected])

Abstract

The temptation to equate environmental change with archaeologically observed events is always with us, and matching a climatic downturn with civilisation collapse is perhaps more attractive then ever. The archaeologically observed collapse of the Tiwanaku civilisation in the twelfth century AD has been specifically related to a prolonged drought which would have affected the people’s ability to produce food. However, a careful scrutiny of the data from ice cores and lake sediments persuades the author that no such drought can be inferred: the evidence for climatic change is of quite a different scale and order to the archaeological changes and cannot be used as an explanation of social events.

Type
Research
Copyright
Copyright © Antiquity Publications Ltd. 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M., Binford, M. Brenner, M. & Kelts, K.. 1997. A 3,500 14C yr high-resolution sediment record of lake level changes in Lake Titicaca, Bolivia/Peru. Quaternary Research 47: 169–80.CrossRefGoogle Scholar
Biesboer, D., M. Binford & Kolata, A.. 1999. Nitrogen fixation in soils and canals of rehabilitated raised fields in the Bolivian altiplano. Biotropica 31: 255–67.Google Scholar
Binford, M., Kolata, A. Brenner, M. Janusek, J. Seddon, M. Abbott, M. & Curtis, J.. 1997. Climate variation and the rise and fall of an Andean civilization. Quaternary Research 47: 235–48.CrossRefGoogle Scholar
Calancha, A. 1939. Cronica Moralizada de la Orden de San Agustin del Peru [1638]. La Paz, Bolivia: Imprenta Artistica.Google Scholar
Calaway, M.J. 2001. Environmental factors and prehistoric societal collapse: exploring the agro-ecological collapse of the Tiwanaku civilization and environmental time-scales. MA Thesis. State University of New York at Binghamton.Google Scholar
Carney, H.J., Binford, M. Kolata, A. Marin, R. & Goldman, C.. 1993. Nutrient and sediment retention in Andean raised-field agriculture. Nature 364: 131–3.Google Scholar
Castelnau, F. 1939. El Pueblo de Tihuanacu. [18501851], in Otero, G. (ed.) Tihuanacu: antologia de los principales escritos de los cronistas coloniales, americanistas e historiadores bolivianos, Biblioteca Boliviana 2: 7887. La Paz, Bolivia: Imprenta Aristica.Google Scholar
De Leon, Cieza, De, Pedro. 1969. The Incas of Pedro de Cieza de Leon Von Hagen, V.W. & de Onis, Harriet (ed.) Norman: University of Oklahoma Press.Google Scholar
Clifford, N.J. & Mcclatchey, J.. 1996. Identifying the time-scales of environmental change: the instrumental record, in Driver, T. & Chapman, G. (ed.) Time-scales & environmental change: 88107. London: Routledge.Google Scholar
Driver, T.S. & Chapman, G.P.. 1996. Time, mankind, and the earth, in Driver, T. & Chapman, G. (ed.) Time-scales & environmental change: 124. London: Routledge.Google Scholar
Erickson, C. 1988. An archaeological investigation of raised fields in the Lake Titicaca Basin of Peru. PhD Thesis. University of Illinois.Google Scholar
Erickson, C. 1999. Neo-environmental determinism and agrarian ‘collapse’ in Andean prehistory. Antiquity 73: 634–42.CrossRefGoogle Scholar
Fagan, B. 1999. Floods, famines, and emperors: El Niño and the fate of civilizations. New York: HarperCollins.Google Scholar
Fagan, B. 2003. The long summer: how climate changed civilization. New York: Basic Books.Google Scholar
Francou, B., Sicart, J.-E. Vuille, M. Wagnon, P. & Mendoza, J.. 2003. Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16?S. Journal of Geophysical Research D: Atmospheres 108 (5) (16 MAR): ACL 1-1-1-12.CrossRefGoogle Scholar
Grove, J. 1996. The century time-scale, in Driver, T. & Chapman, G. (ed.) Time-scales & environmental change: 3987. London: Routledge.Google Scholar
Hardy, D.R., Vuille, M. Braun, C. Keimig, F. & Bradley, R.S.. 1998. Annual and daily meteorological cycles at high altitude on a tropical mountain. Bulletin of the American Meteorological Society 79: 1899913.Google Scholar
Henderson, K.A., Thompson, L.G. & Lin, P.-N.. 1999. Recording of El Niño in ice core delta 18 oxygen records from Nevado Huascarán, Peru. Journal of Geophysical Research 104 (D24): 3105331065.Google Scholar
Isbell, W.H. 1998. Tiwanaku and its hinterland: archaeology and paleoecology of an Andean civilization (book review). Human Ecology: An Interdisciplinary Journal 26 (3): 519–23.Google Scholar
Keys, D. 2000. Catastrophe: a quest for the origins of the modern world. New York: Ballantine Books.Google Scholar
Kolata, A.L. 1991. The technology and organization of agricultural production in the Tiwanaku state. Latin American Antiquity 2 (2): 99125.Google Scholar
Kolata, A.L. 1993. The Tiwanaku. Oxford: Basil Blackwell.Google Scholar
Kolata, A.L. (ed.) 1996. Tiwanaku and its hinterland: archaeology and paleoecology of an Andean civilization, vol. 1. Washington, D.C.: Smithsonian Institution Press.Google Scholar
Kolata, A.L., Binford, M.W. Brenner, M. Janusek, J.W. & Ortloff, C.. 2000. Environmental thresholds and the empirical reality of state collapse: a response to Erickson (1999). Antiquity 74: 424–6.Google Scholar
Kolata, A. & Ortloff, C.. 1989. Thermal analysis of Tiwanaku raised field systems in the Lake Titicaca basin of Bolivia. Journal of Archaeological Sciences 16: 233–63.Google Scholar
Leyden, B. 1989. Datos Polínicos del Período Holoceno Tardío en el Lago Titicaca, Bolivia: una Posible Inundación en la Pampa Koani, in Kolata, A. (ed.) Arqueología de Lurkurmata, vol. 2: 263–74. La Paz, Bolivia: Producciones Puma Punku.Google Scholar
Ortloff, C. & Kolata, A.. 1993. Climate and collapse: agroecological perspectives on the decline of the Tiwanaku state. Journal of Archaeological Science 20: 195221.CrossRefGoogle Scholar
Posnansky, A. 1945. Tihuanacu: the cradle of American man, vol. 1 and 2. New York: J.J. Augustin.Google Scholar
Redman, C.L. 1999. Human impact on ancient environments. Tucson, AZ: University of Arizona Press.Google Scholar
Rodbell, D.T., Seltzer, G.O. Anderson, D.M. Abbott, M.B. Enfield, D.B. & Newman, J.H.. 1999. An ∼15 000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 283 (5401): 516–20.CrossRefGoogle Scholar
Seltzer, G.O., Baker, P. Cross, S. Dunbar, R. & Fritz, S.. 1998. High-resolution seismic reflection profiles from Lake Titicaca, Peru-Bolivia: evidence for Holocene aridity in the tropical Andes. Geology 26 (2): 167–70.2.3.CO;2>CrossRefGoogle Scholar
Stanley, S.M. 1998. Children of the ice age: how a global catastrophe allowed humans to evolve. New York: W.H. Freeman & Co.Google Scholar
Stevens, W.K. 1999. The change in the weather: people, weather, and the science of climate. New York: Delacorte Press.Google Scholar
Thompson, L.G. 2000. Ice core evidence for climate change in the tropics: implications for the future. Quaternary Science Reviews 19: 1935.Google Scholar
Thompson, L.G., Davis, M.E. Mosley-Thompson, E. & Liu, K.-B.. 1988. Pre-Incan agricultural activity recorded in dust layers in two tropical ice cores. Nature 226 (22/29): 763–5.CrossRefGoogle Scholar
Thompson, L.G., Davis, M.E. Mosley-Thompson, E. Sowers, T.A. Henderson, K.A. Zagorodnov, V.S.-N. Lin, P. Mikhalenko, V.N. Campen, R.K. Bolzan, J.F. Cole-Dai, J. & Francou, B.. 1998. A 25 000-year tropical climate history from Bolivian ice cores. Science 282: 185864.Google Scholar
Thompson, L.G. & Mosley-Thompson, E.. 1992. Tropical ice core paleoclimatic records, Quelccaya ice cap, Peru, AD 470 to 1984, Byrd Polar Research Center Miscellaneous Publication 321. Columbus: Ohio State University Printing Services.Google Scholar
Thompson, L.G., Mosley-Thompson, E. Bolzan, J.F. & Koci, B.R.. 1985. A 1500-year record of tropical precipitation in ice cores from Quelccaya ice cap, Peru. Science 229 (6): 971–3.Google Scholar
Thompson, L.G., Mosley-Thompson, E. Dangaard, W. & Grootes, P.M.. 1986. The little ice age as recorded in the stratigraphy of the tropical Quelccaya ice cap. Science 234 (17): 361–4.Google Scholar
Thompson, L.G., Mosley-Thompson, E. Davis, M.E.-N. Lin, P. Henderson, K.A. Cole-Dai, J. Bolzan, J.F. & Liu, K.-B.. 1995. Late glacial stage and Holocene tropical ice core records from Huascarán, Peru. Science 269: 4650.Google Scholar
Thompson, L.G., Mosley-Thompson, E. Grootes, P.M. Pourchet, M. & Hastenrath, S.. 1984. Tropical glaciers: potential for ice core palaeoclimatic reconstructions. Journal of Geophysical Research 89 (D3): 463846.Google Scholar
Thompson, L.G., Mosley-Thompson, E. & Henderson, K.A.. 2000. Ice-core palaeoclimate records in tropical South America since the last glacial maximum. Journal of Quaternary Science 15 (4): 377–94.Google Scholar
Van Buren, M. 2001. The archaeology of El Niño events and other ‘natural disasters’. Journal of Archaeological Method and Theory 8 (2): 129–49.Google Scholar
Vuille, M. 1999. Atmospheric circulation over the Bolivian altiplano during dry and wet periods and extreme phases of the southern oscillation. International Journal of Climatology 19: 1579600.Google Scholar
Vuille, M., Bradley, R.S. Werner, M. & Keimig, F.. 2003. 20th century climate change in the tropical Andes: observations and model results. Climatic Change 59 (1–2): 7599.Google Scholar
Vuille, M., Hardy, D. Braum, C. Keimig, F. & Bradley, R.. 2001. Climate variability on interseasonal to interannual timescales on the Bolivian altiplano with special emphasis on the Nevado Sajama region. Ecologia en Bolivia 35: 1740.Google Scholar
Williams, P.R. 2002. Rethinking disaster induced collapse in the demise of the Andean highland states: Wari and Tiwanaku. World Archaeology 33 (3): 361–74.Google Scholar