Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T02:35:14.603Z Has data issue: false hasContentIssue false

First evidence of Pleistocene rock art in North Africa: securing the age of the Qurta petroglyphs (Egypt) through OSL dating

Published online by Cambridge University Press:  21 November 2011

Dirk Huyge
Affiliation:
1Royal Museums of Art and History, Jubelpark 10/10 Parc du Cinquantenaire, B-1000 Brussels, Belgium (Email: [email protected])
Dimitri A.G. Vandenberghe
Affiliation:
2Laboratory of Mineralogy and Petrology (Luminescence Research Group), Department of Geology and Soil Science, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium
Morgan De Dapper
Affiliation:
3Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium
Florias Mees
Affiliation:
4Department of Geology and Mineralogy, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
Wouter Claes
Affiliation:
1Royal Museums of Art and History, Jubelpark 10/10 Parc du Cinquantenaire, B-1000 Brussels, Belgium (Email: [email protected])
John C. Darnell
Affiliation:
5Department of Near Eastern Languages and Civilizations, Yale University, P.O. Box 208236, New Haven, CT 06520-8236, USA

Extract

Long doubted, the existence of Pleistocene rock art in North Africa is here proven through the dating of petroglyph panels displaying aurochs and other animals at Qurta in the Upper Egyptian Nile Valley. The method used was optically stimulated luminescence (OSL) applied to deposits of wind-blown sediment covering the images. This gave a minimum age of ~15 000 calendar years making the rock engravings at Qurta the oldest so far found in North Africa.

Type
Research article
Copyright
Copyright © Antiquity Publications Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamiec, G. & Aitken, M.J.. 1998. Dose-rate conversion factors: update. Ancient TL 16: 3550.Google Scholar
Aitken, M.J. 1998. An introduction to optical dating. The dating of Quaternary sediments by the use of photon-stimulated luminescence. Oxford: Oxford University Press.Google Scholar
Bahn, P.G. & Vertut, J.. 1997. Journey through the Ice Age. London: Weidenfeld & Nicolson.Google Scholar
Barrière, C. 1968. Les gravures de la Grotte de la Mairie à Teyjat (Dordogne). Travaux de l'Institut d'Art Préhistorique 10: 112.Google Scholar
Bosinski, G., 'errico, F.D & Schiller, P.. 2001. Die gravierten Frauendarstellungen von Gönnersdorf. Stuttgart: Franz Steiner Verlag.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2): 425–30.CrossRefGoogle Scholar
De Corte, F., Vandenberghe, D., De Wispelaere, A., Buylaert, J.-P. & Van Den Haute, P.. 2006. Radon loss from encapsulated sediments in Ge gamma-ray spectrometry for the annual radiation dose determination in luminescence dating. Czech Journal of Physics 56: D183D194.CrossRefGoogle Scholar
Dee, M.W., Brock, F., Harris, S.A., Bronk Ramsey, C., Shortland, A.J., Higham, T.F.G. & Rowland, J.M. 2010. Investigating the likelihood of a reservoir offset in the radiocarbon record for ancient Egypt. Journal of Archaeological Science 37: 687–93.CrossRefGoogle Scholar
Derese, C., Vandenberghe, D., Eggermont, N., Bastiaens, J., Annaert, R. & Van Den Haute, P.. 2010. A medieval settlement caught in the sand: optical dating of sand-drifting at Pulle (N Belgium). Quaternary Geochronology 5: 336–41.CrossRefGoogle Scholar
Duller, G.T.A. 2004. Luminescence dating of Quaternary sediments: recent advances. Journal of Quaternary Science 19: 183–92.CrossRefGoogle Scholar
Graziosi, P. 1968. L'art paléo-épipaléolithique de la Province Méditerranéenne et ses nouveaux documents d'Afrique du Nord et du Proche-Orient, in Ripoll, E. Perelló (ed.) Simposio Internacional de Arte Rupestre, Barcelona, 1966: 265–71. Barcelona: Diputación Provincial de Barcelona.Google Scholar
Henshilwood, C.S., D'errico, F., Yates, R., Jacobs, Z., Tribolo, C., Duller, G.A.T., Mercier, N., Sealy, J.C., Valladas, H., Watts, I. & Wintle, A.G. 2002. Emergence of modern human behaviour: Middle Stone Age engravings from South Africa. Science 295: 1278–80.CrossRefGoogle ScholarPubMed
Henshilwood, C.S., 'Errico, F.D & Watts, I.. 2009. Engraved ochres from the Middle Stone Age levels at Blombos Cave, South Africa. Journal of Human Evolution 57: 2747.CrossRefGoogle ScholarPubMed
Huyge, D. 2005. The fish hunters of el-Hosh: rock art research and archaeological investigations in Upper Egypt (1998-2004). Bulletin des Séances de l'Academie Royale des Sciences d'Outre-Mer 51: 231–49.Google Scholar
Huyge, D. 2008. Côa in Africa: Late Pleistocene rock art along the Egyptian Nile. International Newsletter on Rock Art (INORA) 51: 17.Google Scholar
Huyge, D. 2009. Late Palaeolithic and Epipalaeolithic rock art in Egypt: Qurta and el-Hosh. Archéo-Nil 19: 108120.Google Scholar
Huyge, D. & Claes, W.. 2008. ‘Ice Age’ art along the Nile. Egyptian Archaeology. The Bulletin of the Egypt Exploration Society 33: 25–8.Google Scholar
Huyge, D. & Ikram, S.. 2009. Animal representations in the Late Palaeolithic rock art of Qurta (Upper Egypt), in Riemer, H., Örster, F.F, Herb, M. & Öllath, N.P (ed.) Desert animals in the Eastern Sahara: status, economic significance and cultural reflection in antiquity: 157–74. Köln: Heinrich-Barth-Institut.Google Scholar
Huyge, D., Watchman, A., De Dapper, M. & Marchi, E.. 2001. Dating Egypt's oldest ‘art’: AMS 14C age determinations of rock varnishes covering petroglyphs at el-Hosh (Upper Egypt). Antiquity 75: 6872.CrossRefGoogle Scholar
Huyge, D., Aubert, M., Barnard, H., Claes, W., Darnell, J.C, De Dapper, M., Figari, E., Ikram, S., Lebrun-Nélis, A. & Therasse, I.. 2007. 'Lascaux along the Nile’: Late Pleistocene rock art in Egypt. Antiquity 81. Available at: http://www. antiquity. ac. uk/projgall/huyge313/ (accessed 12 January 2011).Google Scholar
Jelínek, J. 2004. Sahara. Histoire de l'art rupestre libyen. Grenoble: Editions Jérôme Millon.Google Scholar
Kelany, A. In press. More Late Palaeolithic rock art at Wadi Abu Subeira, Upper Egypt. Annales du Service des Antiquités de l'Egypte.Google Scholar
Le Quellec, J.-L. 1998. Art rupestre et préhistoire du Sahara. Paris: Payot & Rivages.Google Scholar
Linseele, V. 2004. Size and size change of the African aurochs during the Pleistocene and Holocene. Journal of African Archaeology 2: 165–85.CrossRefGoogle Scholar
Lorblanchet, M. & Welté, M.-C.. 1987. Les figurations féminines stylisées du Magdalénien supérieur du Quercy. Bulletin de la Société des Etudes du Lot 108, f. 3: 357.Google Scholar
Mori, F. 1974. The earliest Saharan rock-engravings. Antiquity 48: 8792.CrossRefGoogle Scholar
Murray, A.S. & Olley, J.M.. 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria 21: 116.Google Scholar
Murray, A.S. & Wintle, A.G.. 2000. Luminescence dating using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 5773.CrossRefGoogle Scholar
Murray, A.S. 2003. The single aliquot regenerative dose protocol: improvements in reliability. Radiation Measurements 37: 377–81.CrossRefGoogle Scholar
Muzzolini, A. 1992. Dating the earliest central Saharan rock art: archaeological and linguistic data, in Friedman, R. & Adams, B. (ed.) The followers of Horus. Studies dedicated to Michael Allen Hoffman: 147–54. Oxford: Oxbow.Google Scholar
Paradisi, U. 1965. Prehistoric art in the Gebel el-Akhdar (Cyrenaica). Antiquity 39: 95101.CrossRefGoogle Scholar
Paulissen, E. & Vermeersch, P.M.. 1989. Le comportement des grands fleuves allogènes: l'exemple du Nil saharien au Quaternaire supérieur. Bulletin de la Société géologique de France 8, f. 5: 7383.CrossRefGoogle Scholar
Storemyr, P., Kelany, A., Negm, M.A. & Tohami, A.. 2008. More ‘Lascaux along the Nile'? Possible Late Palaeolithic rock art in Wadi Abu Subeira, Upper Egypt. Sahara 19: 155–8.Google Scholar
Vandenberghe, D. 2004. Investigation of the optically stimulated luminescence dating method for application to young geological sediments. PhD dissertation, Ghent University. Available at: https://biblio. ugent. be/record/000470756 (accessed 12 January 2011).Google Scholar
Vandenberghe, D., Kasse, C., Hossain, S.M., De Corte, F.Van Den Haute, P., Fuchs, M. & S.Murray, A.. 2004. Exploring the method of optical dating and comparison of optical and 14C ages of Late Weichselian coversands in the southern Netherlands. Journal of Quaternary Science 19: 7386.CrossRefGoogle Scholar
Vandenberghe, D., Vanneste, K., Verbeeck, K., Paulissen, E., Buylaert, J.-P., De Corte, F. & Van Den Haute, P.. 2009. Late Weichselian and Holocene earthquake events along the Geleen fault in NE Belgium: OSL age constraints. Quaternary International 199: 5674.CrossRefGoogle Scholar
Wendt, W.E. 1974. ‘Art mobilier’ aus der Apollo 11-Grotte in Südwest-Afrika. Die ältesten datierten Kunswerke Afrikas. Acta Praehistorica et Archaeologica 5: 142.Google Scholar
Wendt, W.E. 1976. ‘Art mobilier’ from the Apollo 11 Cave, South West Africa: Africa's oldest dated works of art. South Africa Archaeological Bulletin 31: 511.CrossRefGoogle Scholar
Wintle, A.G. & Murray, A.S.. 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41: 369–91.CrossRefGoogle Scholar