Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T22:53:16.807Z Has data issue: false hasContentIssue false

Fell points from Merín Lagoon, Uruguay: new data and their relevance to the peopling of south-eastern South America

Published online by Cambridge University Press:  01 June 2022

Hugo G. Nami*
Affiliation:
IGEBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina

Abstract

The dating and routes by which humans colonised South America continue to be debated. Recent research in Uruguay has yielded new Palaeoindian lithic finds from the southern shores of the coastal Merín Lagoon. The author's analysis of a group of Fell points—comparable to other regional examples—shows that this widespread artefact was produced using locally available materials and that they were repeatedly resharpened and repaired until no longer functional. The finds from the Merín Lagoon permit consideration of changing sea levels and their influence on colonisation routes, resource exploitation and archaeological preservation. The Atlantic coastline may have been one possible route of entry for early colonisers of South America.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of Antiquity Publications Ltd.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achkar, M., Dominguez, A. & Pesce, F.. 2012. Cuenca de la Laguna Merín–Uruguay Aportes para la discusión ciudadana. Montevideo: Ediciones REDES-AT.Google Scholar
Adams, J.M. & Faure, H.. 1997. Preliminary vegetation maps of the world since the Last Glacial Maximum: an aid to archaeological understanding. Journal of Archaeological Science 24: 623–47. https://doi.org/10.1006/jasc.1996.0146CrossRefGoogle Scholar
Andrefsky, W. Jr. 2009. The analysis of stone tool procurement, production, and maintenance. Journal of Archaeological Research 17: 65103. https://doi.org/10.1007/s10814-008-9026-2CrossRefGoogle Scholar
Ayup-Zouain, R. 2006. Evolución Paleográfica y dispersión de los sedimentos del Río de La Plata, in Menafra, R., Rodríguez, L., Scarabino, F. & Conde, D. (ed.) Bases para la conservación y manejo de la costa uruguaya: 18. Montevideo: Vida Silvestre.Google Scholar
Barboza, E.G. et al. 2021. Geomorphological and stratigraphic evolution of a fluvial incision in the coastal plain and inner continental shelf in southern Brazil. Marine Geology 437: 106514. https://doi.org/10.1016/j.margeo.2021.106514CrossRefGoogle Scholar
Bellwood, P. (ed.). 2014. The global prehistory of human migration. Chichester: Wiley-Blackwell.Google Scholar
Bird, J.B. 1969. A comparison of south Chilean and Ecuatorial ‘fishtail’ projectile points. Kroeber Anthropological Society Papers 40: 5271.Google Scholar
Bird, J. & Cooke, R.. 1979. Los artefactos más antiguos de Panamá. Revista Nacional de Cultura 6: 729.Google Scholar
Bocherens, H. et al. 2017. Isotopic insight on paleodiet of extinct Pleistocene megafaunal Xenarthrans from Argentina. Gondwana Research 48: 714. https://doi.org/10.1016/j.gr.2017.04.003CrossRefGoogle Scholar
Boëda, E. et al. 2021. The first fishtail point find in Piauí State, northeastern Brazil: significance and hypothesis. PaleoAmerica 7. https://doi.org/10.1080/20555563.2020.1868750CrossRefGoogle Scholar
Bosch, A., Femenías, J. & Olivera, A.. 1980. Dispersión de las puntas líticas pisciformes en el Uruguay, in III Congreso Nacional de Arqueología. Montevideo: CEA.Google Scholar
Bossi, J. & Ortiz, A.. 2011. Geología del Holoceno, in García Rodríguez, F. (ed.) El Holoceno en la zona costera de Uruguay: 1348. Montevideo: UDELAR-CSIC.Google Scholar
Bracco Boksar, R., del Puerto, L. & Inda, H.. 2008. Prehistoria y Arqueología de la Cuenca de Laguna Merín, in Loponte, D. & Acosta, A. (ed.) Entre la tierra y el agua: arqueología de humedales de Sudamérica: 159. Buenos Aires: Los Argonautas.Google Scholar
Bracco Boksar, R. et al. 2011. Niveles relativos del mar durante el Pleistoceno final–Holoceno en la costa de Uruguay, in García-Rodríguez, F. (ed.) El Holoceno en la zona costera de Uruguay: 6592. Montevideo: UDELAR.Google Scholar
Bradley, B.A., Collins, M.B. & Hemmings, A. (ed.). 2010. Clovis technology. Ann Arbor (MI): International Monographs in Prehistory.Google Scholar
Callahan, E. 1979. The basics of biface knapping in the Eastern Fluted Point tradition: a manual for flintknappers and lithic analysts. Archaeology of Eastern North America 7: 1180.Google Scholar
Callahan, E. 1981. Pamunkey housebuilding: an experimental study of Late Woodland construction technology in the Powhatan confederacy. Unpublished PhD dissertation, Catholic University of America.Google Scholar
Carbonera., M. & Loponte, D.. 2021. Raw materials and functional designs of fishtail projectile points from southern Brazil. Journal of Lithic Studies 8: 148. https://doi.org/10.2218/jls.4423CrossRefGoogle Scholar
Collet, G.C. 1980. Consideracoes sobre Algumas Pecas Liticas de “Pavao” (Itaoca, Apiai, SP). Unpublished report, Departamento de Arqueologia da SBE (Sociedade Brasileira de Espeologia), Sao Paulo.Google Scholar
Colombo, M. & Flegenheimer, N.. 2013. La Elección de Rocas de Colores por los Pobladores Tempranos de la Región Pampeana (Buenos Aires, Argentina). Nuevas consideraciones desde las canteras. Boletín. Museo Chileno de Arte Precolombino 18: 125–37. https://doi.org/10.4067/S0718-68942013000100008CrossRefGoogle Scholar
Czerwonogora, A., Fariña, R.A. & Tonni, E.P.. 2011. Diet and isotopes of Late Pleistocene ground sloths: first results for Lestodon and Glossotherium (Xenarthra, Tardigrada). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 262: 257–66. https://doi.org/10.1127/0077-7749/2011/0197CrossRefGoogle Scholar
Dong, G., Morrison, G. & Jaireth, S.. 1995. Quartz textures in epithermal veins, Queensland: classification, origin and implication. Economic Geology 90: 1841–56. https://doi.org/10.2113/gsecongeo.90.6.1841CrossRefGoogle Scholar
Dumbar, J.S. 2012. The search for Paleoindian contexts in Florida and the adjacent Southeast. Unpublished PhD dissertation, Florida State University.Google Scholar
Faught, M.K. 2004. The underwater archaeology of paleolandscapes, Apalachee Bay, Florida. American Antiquity 69: 275–89. https://doi.org/10.2307/4128420CrossRefGoogle Scholar
Gallo, V., Avilla, L., Pereira, R. & Absolon, B.. 2009. Distributional patterns of herbivore mega-mammals during the Late Pleistocene of South America. Anais da Academia Brasileira de Ciências 85: 543–56. https://doi.org/10.1590/S0001-37652013000200005Google Scholar
Goebel, T., Waters, M.R. & O'Rourke, D.H.. 2008. The Late Pleistocene dispersal of modern humans in the Americas. Science 319: 1497–502. https://doi.org/10.1126/science.1153569CrossRefGoogle ScholarPubMed
Goodyear, A.C. 1974. The Brand site: a techno-functional study of a Dalton site in northeast Arkansas (Research Series Number 7). Fayetteville: Arkansas Archaeological Survey.Google Scholar
Haynes, G. 2002. The early settlement of North America: the Clovis era. Cambridge: Cambridge University Press.Google Scholar
Hermo, D., Terranova, E. & Miotti, L.. 2015. Tecnología y uso de materias primas en puntas cola de pescado de la Meseta de Somuncurá (Provincia De Río Negro, Argentina). Chungará 47: 101–15. https://doi.org/10.4067/S0717-73562015005000005Google Scholar
Howard, C.D. 2002. The gloss patination of flint artifacts. Plains Anthropologist 47: 283–87. https://doi.org/10.1080/2052546.2002.11932098CrossRefGoogle Scholar
Iriarte, J. 2006. Landscape transformation, mounded villages, and adopted cultigens: the rise of early formative communities in southeastern Uruguay. World Archaeology 38: 644–63. https://doi.org/10.1080/00438240600963262CrossRefGoogle Scholar
Kuhn, S.L. & Miller, D.S.. 2015. Artifacts as patches: the marginal value theorem and stone tool life histories, in Goodale, N. & Andrefsky, W. Jr. (ed.) Lithic technological systems and evolutionary theory: 172–97. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139207775.014CrossRefGoogle Scholar
López Mazz, J.M. 2001. Las estructuras tumulares (cerritos) del Litoral Atlántico uruguayo. Latin American Antiquity 12: 231–55. https://doi.org/10.2307/971631CrossRefGoogle Scholar
López Mazz, J.M. 2013. Early human occupation of Uruguay: radiocarbon database and archaeological implications. Quaternary International 301: 94103. https://doi.org/10.1016/j.quaint.2012.07.004CrossRefGoogle Scholar
Loponte, D. & Corriale, M.J.. 2019. Patterns of resource use and isotopic niche overlap among guanaco (Lama guanicoe), Pampas deer (Ozotoceros bezoarticus) and marsh deer (Blastocerus dichotomus) in the Pampas: ecological, paleoenvironmental and archaeological implications. Environmental Archaeology 25: 411–44. https://doi.org/10.1080/14614103.2019.1585646CrossRefGoogle Scholar
Loponte, D., Carbonera, M. & Silvestre, R.. 2015. Fishtail projectile points from South America: the Brazilian record. Archaeological Discovery 3: 85103. https://doi.org/10.4236/ad.2015.33009CrossRefGoogle Scholar
Loponte, D., Okumura, M. & Carbonera, M.. 2016. New records of fishtail projectile points from Brazil and its implications for its peopling. Journal of Lithic Studies 3: 6385. https://doi.org/10.2218/jls.v3i1.1312Google Scholar
Loureiro, J. & Sánchez Bettucci, L.. 2019. Texto Explicativo de la Carta Geológica del Uruguay. Revista Investigaciones 2(1):1027.Google Scholar
MacDonald, B.L. et al. 2020. Paleoindian ochre mines in the submerged caves of the Yucatán Peninsula, Quintana Roo, Mexico. Science Advances 6: eaba1219. https://doi.org/10.1126/sciadv.aba1219CrossRefGoogle ScholarPubMed
Martínez, S. & Rojas, A.. 2013. Relative sea level during the Holocene in Uruguay. Palaeogeography, Palaeoclimatology, Palaeoecology 374: 123–31. https://doi.org/10.1016/j.palaeo.2013.01.010CrossRefGoogle Scholar
Meltzer, D.J. 2004. Issues of scale, demography, and landscape learning, in Barton, C.M., Clark, G.A., Yesner, D. & Pearson, G.A. (ed.) The settlement of the American continents: a multidisciplinary approach to human biogeography: 123–37. Tucson: University of Arizona Press.Google Scholar
Meltzer, D.J. 2014. The human colonization of the Americas: archaeology, in Bellwood, P. (ed.) The global prehistory of human migration: 6169. Chichester: Wiley-Blackwell.Google Scholar
Méndez, C. et al. 2018. Late Pleistocene to Early Holocene high-quality quartz crystal procurement from the Valiente quarry workshop site (32°S, Chile, South America). PLoS ONE 13: e0208062. https://doi.org/10.1371/journal.pone.0208062CrossRefGoogle ScholarPubMed
Moreno da Sousa, J.C. 2020. The technological diversity of lithic industries in eastern South America during the Late Pleistocene–Holocene transition, in Ono, R. (ed.) Pleistocene archaeology: migration, technology, and adaptation. London: IntechOpen. https://doi.org/10.5772/intechopen.89154Google Scholar
Morrow, J.E. & Morrow, T.A.. 1999. Geographic variation in fluted projectile points: a hemispheric perspective. American Antiquity 64: 215–30. https://doi.org/10.2307/2694275CrossRefGoogle Scholar
Muzio, R. 2004. El magmatismo Mesozoico in Uruguay y sus recursos minerales, in Veroslavsky, G., Ubilla, M. & Martínez, S. (ed.) Cuencas Sedimentarias de Uruguay. Geología, paleontología y recursos naturale: Mesozoico: 77102. Montevideo: DIRAC–SUG.Google Scholar
Nami, H.G. 1989/1990. Observaciones sobre algunos artefactos bifaciales de Bahía Laredo: consideraciones tecnológicas para el extremo Austral. Anales del Instituto de la Patagonia 19: 141–51.Google Scholar
Nami, H.G. 2007. Research in the Middle Negro River Basin (Uruguay) and the Paleoindian occupation of the Southern Cone. Current Anthropology 48: 164–76. https://doi.org/10.1086/510465CrossRefGoogle Scholar
Nami, H.G. 2013. Archaeology, Paleoindian research and lithic technology in the middle Negro River, central Uruguay. Archaeological Discovery 1: 122. https://doi.org/10.4236/ad.2013.11001CrossRefGoogle Scholar
Nami, H.G. 2014a. Arqueología del último milenio del Pleistoceno en el Cono Sur de Sudamérica, puntas de proyectil y observaciones sobre tecnología Paleoindia en el Nuevo Mundo, in Farias, M. & Lourdeau, A. (ed.) Peuplement et modalités d'occupation de l'Amérique du Sud: l'apport de la technologie lithique: 279336. Prigonrieux: @rchéo-éditions.Google Scholar
Nami, H.G. 2014b. Secuencias de reducción bifaciales Paleoindias y puntas Fell en el Valle del Ilaló (Ecuador): observaciones para comprender la tecnologia lítica Pleistocénica en Sudamérica, in Farias, M. & Lourdeau, A. (ed.) Peuplement et modalités d'occupation de l'Amérique du Sud: l'apport de la technologie lithique: 179220. Prigonrieux: @rchéo-éditions.Google Scholar
Nami, H.G. 2015a. New records and observations on Paleo-American artifacts from Cerro Largo, northeastern Uruguay and a peculiar case of reclaimed fishtail points. Archaeological Discovery 3: 114–27. https://doi.org/10.4236/ad.2015.33011CrossRefGoogle Scholar
Nami, H.G. 2015b. Experimental observations on some non-optimal materials from southern South America. Lithic Technology 40: 128–46. https://doi.org/10.1179/2051618515Y.0000000004CrossRefGoogle Scholar
Nami, H.G. 2016. Paleo-American finds from Venezuela: evidence to discuss the spread of Fell points and the peopling of northern South America. Cadernos do CEOM 29(45): 121–28.Google Scholar
Nami, H.G. 2017a. Silcrete as a valuable resource for stone tool manufacture and its use by Paleo-American hunter-gatherers in southeastern South America. Journal of Archaeological Science: Reports 15: 539–60. https://doi.org/10.1016/j.jasrep.2016.05.003Google Scholar
Nami, H.G. 2017b. Hallazgos Paleoindios en Dolores, departamento de Soriano, Uruguay. Cuadernos INAPL 26: 7783.Google Scholar
Nami, H.G. 2019. Paleoamerican occupation, stone tools from the Cueva del Medio, and considerations for the Late Pleistocene archaeology in southern South America. Quaternary 2: 28. https://doi.org/10.3390/quat2030028CrossRefGoogle Scholar
Nami, H.G. 2020. A glimpse into advances in archaeological research in north-central Uruguay. Archaeological Discovery 8: 147–87. https://doi.org/10.4236/ad.2020.82009CrossRefGoogle Scholar
Nami, H.G. 2021a. Fishtailed projectile points in the Americas: remarks and hypotheses on the peopling of northern South America and beyond. Quaternary International 578: 4772. https://doi.org/10.1016/j.quaint.2020.06.004CrossRefGoogle Scholar
Nami, H.G. 2021b. New morpho-technological studies to enhance the knowledge of Fell point variability in southeastern South America. Journal of Archaeological Science Reports 40: 103205. https://doi.org/10.1016/j.jasrep.2021.103205CrossRefGoogle Scholar
Nami, H.G. & Capcha, J. Yataco. 2020. Further data on Fell points from the southern cone of South America. PaleoAmerica 6: 379–86. https://doi.org/10.1080/20555563.2020.1763721CrossRefGoogle Scholar
Nami, H.G., Florines, A. & Toscano, A.. 2018. New Paleoindian finds, further Fell points data, and technological observations from Uruguay: implications for the human peopling in southeastern South America. Archaeological Discovery 6: 2137. https://doi.org/10.4236/ad.2018.61002CrossRefGoogle Scholar
Nami, H.G., Chichkoyan, K., Trindade, M. & Lanata, J.L.. 2020. A fossil bone of a giant ground sloth from the last millennium of the Pleistocene: new data from Salto Department, Uruguay. Archaeological Discovery 8: 295310. https://doi.org/10.4236/ad.2020.84017CrossRefGoogle Scholar
Nichols, G.W. 1970. Reverse hinge fracture problem in fluted point manufacture. Missouri Archaeological Society Memoir 8: 110.Google Scholar
Oswalt, W. 1976. An anthropological analysis of food-getting technology. New York: Wiley.Google Scholar
Panario, D. & Gutiérrez, O.. 2011. Introducción a la geomorfología de lagunas costeras, lagos someros y charcas de Uruguay, in Rodríguez, F. García (ed.) El Holoceno en la zona costera de Uruguay: 4963. Montevideo: UDELAR-CSIC.Google Scholar
Pereira Lopes, R. & Sekiguchi Buchmann, F.. 2011. Pleistocene mammals from the southern Brazilian continental shelf. Journal of South American Earth Sciences 31: 1727. https://doi.org/10.1016/j.jsames.2010.11.003CrossRefGoogle Scholar
Pereira Lopes, R. et al. 2020. Late Pleistocene–Holocene fossils from Mirim Lake, southern Brazil, and their paleoenvironmental significance. I: vertebrates. Journal of South American Earth Sciences 100: 102566. https://doi.org/10.1016/j.jsames.2020.102566CrossRefGoogle Scholar
Potter, B.A. et al. 2018. Current evidence allows multiple models for the peopling of the Americas. Science Advances 4: eaat5473. https://doi.org/10.1126/sciadv.aat5473CrossRefGoogle ScholarPubMed
Prasciunas, M.M. & Surovell, T.A.. 2015. Reevaluating the duration of Clovis: the problem of the non-representative radiocarbon, in Smallwood, A.M. & Hennings, T.A. (ed.) Clovis: on the edge of a new understanding: 2135. College Station: Texas A&M University Press.Google Scholar
Prous, A. 1992. Arqueologia Brasileira. Brasilia: Universidade de Brasilia.Google Scholar
Towner, R.H. & Warburton, M.. 1990. Projectile point rejuvenation: a technological analysis. Journal of Field Archaeology 17: 311–21. https://doi.org/10.2307/530025Google Scholar
Ubilla, M. et al. 2011. Fauna cuaternaria continental, in Perea, D. (ed.) Fósiles del Uruguay: 283314. Montevideo: DIRAC.Google Scholar
Walker, M. et al. 2018. Formal ratification of the subdivision of the Holocene series/epoch (Quaternary system/period): two new global boundary stratotype sections and points (GSSPs) and three new stages/subseries. Episodes 41: 213–23. https://doi.org/10.18814/epiiugs/2018/018016CrossRefGoogle Scholar
Waters, M.R. & Stafford, T.W.. 2007. Redefining the age of Clovis: implications for the peopling of the Americas. Science 315: 1122–26. https://doi.org/10.1126/science.1137166CrossRefGoogle ScholarPubMed
Weitzel, C., Flegenheimer, N., Colombo, M. & Martínez, J.. 2014. Breakage patterns on fishtail projectile points: experimental and archaeological cases. Ethnoarchaeology 6: 81102. https://doi.org/10.1179/1944289014Z.00000000017CrossRefGoogle Scholar
Weitzel, C., Mazzia, N. & Flegenheimer, N.. 2018. Assessing fishtail points distribution in the Southern Cone. Quaternary International 473: 161–72. https://doi.org/10.1016/j.quaint.2018.01.005CrossRefGoogle Scholar
Wheat, J.B. 1976. Artifact life histories: cultural templates, typology, evidence and inference, in Raymond, J.S., Loveseth, B., Arnold, C. & Reardon, C. (ed.) Primitive art and technology: 715. Calgary: University of Calgary.Google Scholar
Wheat, J.B. 1979. The Jurgens site (Memoir 15). Lincoln (NE): Plains Anthropological Society.10.1080/2052546.1979.11908956CrossRefGoogle Scholar
Yokoyama, Y. et al. 2000. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406: 713–16. https://doi.org/10.1038/35021035CrossRefGoogle ScholarPubMed