Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T19:57:45.989Z Has data issue: false hasContentIssue false

Direct dating of pottery from its organic residues: new precision using compound-specific carbon isotopes

Published online by Cambridge University Press:  02 January 2015

R. Berstan
Affiliation:
Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK (Email: [email protected])
A.W. Stott
Affiliation:
Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK (Email: [email protected]) Present address: CEH–Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
S. Minnitt
Affiliation:
Somerset County Museum, Taunton Castle, Castle Green, Taunton, TA1 1AA, UK
C. Bronk Ramsey
Affiliation:
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, Oxford University, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, UK
R.E.M. Hedges
Affiliation:
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, Oxford University, Dyson Perrins Building, South Parks Road, Oxford, OX1 3QY, UK
R.P. Evershed*
Affiliation:
Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK (Email: [email protected])

Extract

Techniques for identifying organic residues in pottery have been refined over the years by Professor Evershed and his colleagues. Here they address the problem of radiocarbon dating these residues by accelerator mass spectrometry (AMS) which in turn dates the use of the pot. Fatty acids from carcass and dairy products cooked in the pot were isolated from early Neolithic carinated bowls found at the Sweet Track, Somerset Levels, England, and then dated by AMS. The results were very consistent and gave an excellent match to the dendrochronological date of the trackway. The method has wide potential for the precise dating of pottery use on sites.

Type
Research Article
Copyright
Copyright © Antiquity Publications Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayliss, A. & Bronk Ramsey, C.. 2004. Pragmatic Bayesians: a decade of integrating radiocarbon dates into chronological models, in Buck, C. E. & Millard, A. R. (ed.) Tools for constructing chronologies: tools for crossing disciplinary boundaries: 2541. London: Springer.CrossRefGoogle Scholar
Berstan, R., Dudd, S. N., Copley, M. S., Morgan, B. D., Quye, A. & Bvershed, R. P.. 2004. Characterisation of ‘Bog Butter’ using a combination of molecular and isotopic techniques. Analyst 129: 270–5.CrossRefGoogle Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program OxCal, Radiocarbon 43 (2A): 355–63.CrossRefGoogle Scholar
Charters, S., Bvershed, R. P., Goad, L. J., Heron, C. & Blinkhorn, P.. 1993a. Identification of an adhesive used to repair a roman jar. Archaeometry 35: 91101.CrossRefGoogle Scholar
Charters, S., Bvershed, R. P., Goad, L. J., Blinkhorn, P. W. & Denham, V.. 1993b. Quantification and distribution of lipid in archaeological ceramics—implications for sampling potsherds for organic residue analysis and the classification of vessel use. Archaeometry 35: 211–23.CrossRefGoogle Scholar
Charters, S., Bvershed, R. P., Blinkhorn, P. W. & Denham, V.. 1995. Evidence for the mixing of fats and waxes in archaeological ceramics. Archaeometry 37: 113–27.CrossRefGoogle Scholar
Charters, S., Bvershed, R. P., Quye, A., Blinkhorn, P. & Reeves, V.. 1997. Simulation experiments for determining the use of ancient pottery vessels: the behaviour of epicuticular leaf wax during boiling of a leafy vegetable. Journal of Archaeological Science 24: 17.CrossRefGoogle Scholar
Coles, B. 1999. Somerset and the Sweet conundrum, in Harding, A. F. (ed.) Experiment and design. Archaeological studies in honour in John Coles: 163–9. Oxford: Oxbow.Google Scholar
Coles, B. & Coles, J.. 1986. Sweet Track to Glastonbury: the Somerset Levels in prehistory. London: Thames & Hudson.Google Scholar
Coles, J. M. & Orme, B. J.. 1984. Ten excavations along the Sweet Track. Somerset Levels Papers 10: 43–5.Google Scholar
Condamin, J., Formenti, F., Metais, M. O., Michel, M. & Blond, P.. 1976. The application of gas chromatography to the tracing of oil in ancient amphorae. Archaeometry 18: 195201.CrossRefGoogle Scholar
Copley, M. S., Rose, P. J., Clapham, A., Bdwards, D. N., Horton, M. C. & Bvershed, R. P.. 2001a. Detection of palm fruit lipids in archaeological pottery from Qasr Ibrim, Egyptian Nubia. Proceedings of the Royal Society of London B 268: 593–7.CrossRefGoogle Scholar
Copley, M. S., Rose, P. J., Clapham, A., Bdwards, D. N., Horton, M. C. & Bvershed, R. P.. 2001b. Processing palm fruits in the Nile Valley biomolecular evidence from Qasr Ibrim. Antiquity 75: 538–42.CrossRefGoogle Scholar
Copley, M. S., Berstan, R., Dudd, S. N., Docherty, G., Mukherjee, A. J., Straker, V., Payne, S. & Bvershed, R. P.. 2003. Direct chemical evidence for widespread dairying in prehistoric Britain. Proceedings of the National Academy of Sciences of the United States of America 100: 1524–9.CrossRefGoogle ScholarPubMed
Copley, M. S., Hansel, F. A., Sadr, K. & Bvershed, R. P.. 2004. Organic residue evidence for the processing of marine animal products in pottery vessels from pre-colonial archaeological site of Kasteelberg D east, South Africa. South African Journal of Science 100: 279–83.Google Scholar
Copley, M. S., Bland, H. A., Rose, P., Horton, M. & Bvershed, R. P.. 2005a. Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. Analyst 130: 860–71.CrossRefGoogle ScholarPubMed
Copley, M. S., Berstan, R., Dudd, S. N., Straker, V., Payne, S. & Bvershed, R. P.. 2005b. Dairying in antiquity. I. Evidence from absorbed lipid residues dating to the British Iron Age. Journal of Archaeological Science 32 (4): 485503.CrossRefGoogle Scholar
Copley, M. S., Berstan, R., Straker, V., Payne, S. & Bvershed, R. P.. 2005c. Dairying in antiquity. II. Evidence from absorbed lipid residues dating to the British Bronze Age. Journal of Archaeological Science 32 (4): 505–21.CrossRefGoogle Scholar
Copley, M. S., Berstan, R., Mukherjee, A. J., Dudd, S. N., Straker, V., Payne, S. & Bvershed, R. P.. 2005d. Dairying in antiquity. III. Evidence from absorbed lipid residues dating to the British Neolithic. Journal of Archaeological Science 32 (4): 523–46.CrossRefGoogle Scholar
Copley, M. S., Berstan, R., Dudd, S. N., Aillaud, S., Mukherjee, A. J., Straker, V., Payne, S. & Bvershed, R. P.. 2005e. Processing of milk products in pottery vessels through British prehistory. Antiquity 79: 895908.CrossRefGoogle Scholar
Craig, O.B, Forster, M., Andersen, S. H., Koch, B., Crombe, P., Milner, N. J., Stern, B., Bailey, G. N. & Heron, C.P.. 2007. Molecular and isotopic characterisation of the processing of aquatic products in northern European prehistoric pottery. Archaeometry 49/1: 135–52.CrossRefGoogle Scholar
Davies, D.T., Holt, C. & Christie, W. W.. 1983. The composition of milk, in Mepham, T. B. (ed.) Biochemistry of Lactation: 71117. Amsterdam: Elsevier Science Publishers.Google Scholar
De Atley, S. P. 1980. Radiocarbon dating of ceramic materials: progress and prospects. Radiocarbon 22 (3): 987–93.CrossRefGoogle Scholar
Dudd, S. N. & Bvershed, R. P.. 1998. Direct demonstration of milk as an element of archaeological economies. Science 282: 1478–81.CrossRefGoogle ScholarPubMed
Eglinton, T. I., Aluwihare, L. I., Bauer, J. B., Druffel, B.R.M. & Mcnichol, A. P.. 1996. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Analytical Chemistry 68: 904–12.CrossRefGoogle ScholarPubMed
Eglinton, T. I., Benitez-Nelson, B. C., Pearson, A., Mcnichol, A. P., Bauer, J. B. & Druffel, B.R.M.. 1997. Variability in radiocarbon ages of individual organic compounds from marine sediments. Science 277: 796–9.CrossRefGoogle Scholar
Evershed, R. P., Heron, C. & Goad, L. J.. 1990. Analysis of organic residues of archaeological origin by high temperature gas chromatography/mass spectrometry. Analyst 115: 1339–42.CrossRefGoogle Scholar
Evershed, R. P., Heron, C. & Goad, L. J.. 1991. Epicuticular wax components preserved in potsherds as chemical indicators of leafy vegetables in ancient diets. Antiquity 65: 540–4.CrossRefGoogle Scholar
Evershed, R. P., Heron, C., Charters, S. & Goad, L. J.. 1992. The survival of food residues: new methods of analysis, interpretation and application, in Pollard, A. M. (ed.) New developments in archaeological science (Proceedings of the British Academy 77): 187208. Oxford: Oxford University Press.Google Scholar
Evershed, R. P., Arnot, K. I., Collister, J., Eglinton, G. & Charters, S.. 1994. Application of isotope ratio monitoring gas chromatography/mass spectrometry to the analysis of organic residues of archaeological interest. Analyst 119: 909–14.CrossRefGoogle Scholar
Evershed, R. P., Stott, A. W., Raven, A., Dudd, S. N., Charters, S. & Leyden, A.. 1995. Formation of long-chain ketones in ancient pottery vessels by pyrolysis of acyl lipids. Tetrahedron Letters 36: 8875–8.CrossRefGoogle Scholar
Evershed, R. P., Mottram, H. R., Dudd, S. N., Charters, S., Stott, A. W., Lawrence, G. J., Gibson, A. M., Connor, A., Blinkhorn, P. W. & Reeves, V.. 1997a. New criteria for the identification of animal fats in archaeological pottery. Naturwissenschaften 84: 402–6.CrossRefGoogle Scholar
Evershed, R. P., Vaughan, S. J., Dudd, S. N. & Soles, J. S.. 1997b. Fuel for thought? Beeswax in lamps and conical cups from Late Minoan Crete. Antiquity 71: 979–85.CrossRefGoogle Scholar
Evershed, R. P., Dudd, S. N., Copley, M. S., Berstan, R., Stott, A. W., Mottram, H., Buckley, S. A. & Crossman, Z.. 2002. Chemistry of archaeological animal fats. Accounts of Chemical Research 35: 660–8.CrossRefGoogle ScholarPubMed
Evershed, R. P., Dudd, S. N., Anderson-Stojanovic, V. R. & Gebhard, B. R.. 2003. New chemical evidence for the use of combed ware pottery vessels as beehives in ancient Greece. Journal of Archaeological Science 30 (1): 112.CrossRefGoogle Scholar
Evin, J., Gabasio, M. & Lefevre, J. C.. 1989. Preparation techniques for radiocarbon dating of potsherds. Radiocarbon 31 (3): 276–83.CrossRefGoogle Scholar
Friedli, H., Lotscher, H., Oeschger, H., Siegenthaler, U. & Stauffer, B.. 1986. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324: 237–8.CrossRefGoogle Scholar
Gabasio, M., Bvin, J., Arnal, G. B. & Andrieux, P.. 1986. Origins of carbon in potsherds. Radiocarbon 28 (2A): 711–18.CrossRefGoogle Scholar
Gibson, A. 1986. Neolithic and Early Bronze Age pottery. Princes Risborough: Shire Publications.Google Scholar
Gomes, D. C. & Vega, O.. 1999. Dating organic temper of ceramics by AMS: sample preparation and carbon evaluation. Radiocarbon 41 (3): 315–20.CrossRefGoogle Scholar
Hansel, F. A., Copley, M. S., Madureira, L.A.S. & Evershed, R. P.. 2004. Thermally produced & (δ-alkylphenyl)alkanoic acids provide evidence for the processing of marine products in archaeological pottery vessels. Tetrahedron Letters 45: 29993002.CrossRefGoogle Scholar
Hedges, R.B.M., Tiemei, C. & Housley, R. A.. 1992. Results and methods in the radiocarbon dating of pottery. Radiocarbon 34 (3): 906–15.CrossRefGoogle Scholar
Heron, C. & Evershed, R. P.. 1993. The analysis of organic residues and the study of pottery use, in Schiffer, M. (ed.) Archaeological method and theory 5: 247–84. Tucson (AZ): University of Arizona Press.Google Scholar
Heron, C., Nemcek, N., Bonfield, K. M., Dixon, D. & Ottaway, B. S.. 1994. The chemistry of Neolithic beeswax. Naturwissenschaften 81: 266–8.CrossRefGoogle Scholar
Hillam, J., Groves, C.M., Brown, D. M., Baillie, M.G.L., Coles, J. M. & Coles, B. J.. 1990. Dendrochronology of the English Neolithic. Antiquity 64: 210–20.CrossRefGoogle Scholar
Kinnes, I. A. 1979. Description of the Neolithic bowl, in Coles, J. M. (ed.) Somerset Levels Papers 5: 52–4. Hertford: Stephen Austin & Sons.Google Scholar
Kolic, E. D. 1995. Direct radiocarbon dating of pottery: selective heat treatment to retrieve smoke-derived carbon. Radiocarbon 37 (2): 275–84.CrossRefGoogle Scholar
Mihara, S., Miyamoto, K., Ogawa, H., Kurosaka, T., Nakamura, T. & Koike, H.. 2004. AMS 14C dating using black pottery and fiber pottery. Radiocarbon 46 (1): 407–12.CrossRefGoogle Scholar
Mottram, H. R., Dudd, S. N., Lawrence, G. J., Stott, A. W. & Evershed, R. P.. 1999. New chromatographic, mass spectrometric and stable isotope approaches to the classification of degraded animal fats preserved in archaeological pottery. Journal of Chromatography A 833: 209–21.CrossRefGoogle Scholar
Mukherjee, A. J., Berstan, R., Copley, M. S., Gibson, A. M. & Evershed, R. P.. 2007. Compound-specific stable carbon isotope detection of pork consumption applied to the British Late Neolithic. Antiquity 81: 743–54.CrossRefGoogle Scholar
Mukherjee, A. J., Gibson, A. M. & Evershed, R. P.. 20O8. Trends in pig product processing at British Neolithic Grooved Ware sites traced through organic residues in potsherds. Journal of Archaeological Science 20: 115.Google Scholar
Nakamura, T., Taniguchi, Y., Tsuji, S. & Oda, H.. 2001. Radiocarbon dating ofcharred residues on the earliest pottery in Japan. Radiocarbon 42 (2B): 1129–38.CrossRefGoogle Scholar
Needham, S. P. & Bvans, J.. 1987. Honey and dripping: Neolithic food residues from Runnymede Bridge. Oxford Journal of Archaeology 6 (1): 21–8.CrossRefGoogle Scholar
Raven, A. M., Van Bergen, P. F., Stott, A. W., Dudd, S. N. & Evershed, R. P.. 1997. Formation of long-chain ketones in archaeological pottery vessels by pyrolysis of acyl lipids. Journal of Analytical and Applied Pyrolysis 40/41: 267–85.CrossRefGoogle Scholar
Rottlander, R. C. A. 1990. Die Resultate der modernen Fettanalytik und ihre Anwendung auf die prahistorische Forschung. Archaeo-Physika 12: 1354.Google Scholar
Shennan, S. 1988. Quantifying archaeology. Edinburgh: Edinburgh University Press.Google Scholar
Smith, I. F. 1976. The pottery, in Coles, J. M. & Orme, B. J. (ed.) Somerset Levels Papers 2: 63–4. Hertford: Stephen Austin & Sons.Google Scholar
Stott, A. W., Berstan, R., Evershed, R. P., Hedges, R.B.M., Bronk Ramsey, C. & Humm, M. J.. 2001. Radiocarbon dating of single compounds isolated from pottery cooking vessel residue. Radiocarbon 43 (2): 191–7.CrossRefGoogle Scholar
Stott, A.W., Berstan, R., Evershed, R. P., Bronk-Ramsey, C., Hedges, R.B.M. & Humm, M. J.. 2003. Direct dating of archaeological pottery by compound-specific 14C analysis of preserved lipids. Analytical Chemistry 75: 5037–45.CrossRefGoogle ScholarPubMed
Stuiver, M., Reimer, P. J., Bard, B., Beck, J. W., Burr, G. S., Hughen, K. A., Kromer, B., Mccormac, G., Van Der Plicht, J. & Spurk, M.. 1998. INTCAL 98 Radiocarbon age calibration 24000-0 cal BP. Radiocarbon 40 (3): 1041–159.CrossRefGoogle Scholar
Yoshida, K., Ohmichi, J., Kinose, M., Iijima, H., Oono, A., Abe, N., Miyazaki, Y. & Matsuzaki, H.. 2004. The application of 14C dating to potsherds of the Jomon period. Nuclear Instruments and Methods in Physics Research B 223224: 716-22.Google Scholar