Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T20:02:02.479Z Has data issue: false hasContentIssue false

Clovis and Folsom age estimates: stratigraphic context and radiocarbon calibration

Published online by Cambridge University Press:  02 January 2015

R. E. Taylor
Affiliation:
Radiocarbon Laboratory, Department of Anthropology, Institute of Geophysics and Planetary Physics, University of California, Riverside, Riverside CA 92521, USA
C. Vance Haynes Jr.
Affiliation:
Departments of Anthropology and Geosciences, University of Arizona, Tucson AZ 85721, USA
Minze Stuiver
Affiliation:
Quaternary Research Center, Department of Geological Sciences, University of Washington, Seattle WA 98195, USA

Extract

The events to do with peopling the New World archaeologically represented by ‘Clovis’ and ‘Folsom’ have been — tantalizingly — beyond the range of radiocarbon calibration. Now calibration extends further, one can ask if the aburptness of Clovis, of Folsom, and of the transition between them are realities. A calibrated chronology for those sites where the stratigraphic security is best shows these in truth are rapid human affairs.

Type
Papers
Copyright
Copyright © Antiquity Publications Ltd. 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, E., Arnold, M., Fairbanks, E. G. & Hamelin, B.. 1993a. 220Th–234U and 14C ages obtained by mass spectrometry on corals, Radiocarbon 35: 191–9.Google Scholar
Bard, E., Stuiver, M., & Shackleton, N. J.. 1993b. How accurate are our chronologies of the past?, in Eddy, J. A. & Oeschger, H. (ed.), Global changes in the perspective of the past. New York (NY): John Wiley & Sons.Google Scholar
Batt, C.M. & Pollard, A. M.. 1996. Radiocarbon calibration and the peopling of North America, in Orna, M. V. (ed.), Archaeological Chemistry: Organic, Inorganic, and Biochemical Analysis: 415–33. Washington (DC): American Chemical Society.Google Scholar
Becker, B. 1993. An 11,000-year German oak and pine dendrochronology for radiocarbon calibration, Radiocarbon 35: 201–13.Google Scholar
Buck, C. E., Kenworthy, M. B., Litton, C.D. & Smith, A.F.M.. 1991. Combining archaeological and radiocarbon information: a Bayesian approach to calibration, Antiquity 65: 808–21.Google Scholar
Edwards, R. L. 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals, Science 260: 962–8.Google Scholar
Frison, G. 1991. Prehistoric hunters of the High Plains. 2nd edition. San Diego (CA): Academic Press.Google Scholar
Haynes, C. V. Jr. 1971. Time, environment and early man, Arctic Anthropology 8: 214.Google Scholar
Haynes, C. V. Jr. 1984. Stratigraphy and late Pleistocene extinction, in Martin, P. S. & Klein, R. G. (ed.), Quaternary extinctions: a prehistoric evolution. Tucson (AZ): University of Arizona Press.Google Scholar
Haynes, C. V. Jr. 1991. Geoarchaeological and paleohydrological evidence for a Clovis-age drought in North America and its bearing on extinction, Quaternary Research 35: 438–50.CrossRefGoogle Scholar
Haynes, C. V. Jr. 1992. Contributions of radiocarbon dating to the geo-chronology of the peopling of the New World, in Taylor, R. E. et al. (ed.), Radiocarbon after four decades: an inierdiscplinary perspective. New York (NY): Springer-Verlag: 355–74.Google Scholar
In Press. Clovis-Folsom-Midland-Plainview Geochronology, in Jodry, M. (ed.), Folsom archaeology. Washington (DC): Smithsonian Institution. Smithsonian contributions to anthropology.Google Scholar
Holliday, V. T., Johnson, E., Haas, H., & Struckenrath, R.. 1983. Radiocarbon ages from the Lubbock Lake site 1950-1980: framework for cultural and ecologicaI change in the southern High Plains, Plains Anthropologist 28: 165–82.Google Scholar
Humphrey, J. D. & Ferring, C.R.. 1994. Stable isotopie evidence for latest Pleistocene and Holocene climatic change in north-central Texas, Quaternary Research 41: 200–13.CrossRefGoogle Scholar
Kromer, B. & Becker, B.. 1993. German oak and pine 14C calibration, 7200-9439 BC, Radiocarbon 35: 125–35.Google Scholar
Long, A. & Rippeteau, B.. 1974. Testing contemporaneity and averaging radiocarbon dates, American Antiquity 39: 205–15.Google Scholar
Meitzer, D. J. 1989. Why don't we know when the first people came to North America?, American Antiquity 54: 471–90.Google Scholar
Meitzer, D. J. 1995. Clocking the first Americans, Annual Review of Anthropology 24: 2145.Google Scholar
Miller, S. J. 1982. The archaeology and geology of an extinct megafauna/fluted point association at Owl Cave, the Wasden site, Idaho, in Ericson, J. E. et al. (ed.), Peopling of the New World. Los Altos (CA): Ballena Press.Google Scholar
Pearson, G. W., Becker, B. & Qua, F.. 1993. High-precision 14C measurement of German and Irish Oaks to show the natural 14C variations from 7890 to 5000 BC, Radiocarbon 35: 93104.CrossRefGoogle Scholar
Pearson, G. W. & Qua, F.. 1993. High-precision I4C measurement of Irish oaks to show the natural 14C variations from AD 1840-5000 BC, a correction. Radiocarbon 35: 105–23.CrossRefGoogle Scholar
Pearson, G. W. & Stuiver, M.. 1993. High-precision bidecadal calibration of the radiocarbon time scale, 500-2500 BC, Radiocarbon 35: 2533.CrossRefGoogle Scholar
Ramsey, C. B. 1995. OxCal Program 2.18. Oxford: Oxford University Radiocarbon Accelerator Unit.Google Scholar
Reisch, C.H. 1967. Smoothing by spline function, Numerische Mathematik 10: 177–83.CrossRefGoogle Scholar
Spriggs, M. 1989. The dating of the Island Southeast Asian Neolithic: an attempt at Chronometrie hygiene and linguistic correlation, Antiquity 63: 587613.CrossRefGoogle Scholar
Stafford, T. W., Hare, P. E., Currie, L., Jull, T.A.J. & Donahue, D. J.. 1990. Accuracy of North American human skeleton ages, Quaternary Research 34: 111–20.Google Scholar
Stafford, T. W., Hare, P. E., Currie, L., Jull, T.A.J. & Donahue, D. J.. 1991. Accelerator radiocarbon dating at the molecular level, Journal of Archaeological Sciences 18: 3572.Google Scholar
Stuiver, M. & Becker, B.. 1993. High-precision decadal calibration of the radiocarbon time scale, AD 1950-6000 BC, Radiocarbon 35: 3565.Google Scholar
Stuiver, M. & Braziunas, T. G.. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC, Radiocarbon 35: 137–89.CrossRefGoogle Scholar
Stuiver, M., Grootes, P. M. & Braziunas, T. F.. 1995. The GISP2 Ә18 climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes, Quaternary Research 44: 341–54.Google Scholar
Stuiver, M. & Pearson, G. W.. 1993. High-precision calibration of the radiocarbon time scale, AD 1950-500 BC and 2500-6000 BC, Radiocarbon 35: 123.Google Scholar
Stuiver, M. & Reimer, P. J.. 1993a. Extended 14C data base and revised Calib 3.0 14C age calibration program, Radiocarbon 35: 215–30.Google Scholar
Stuiver, M. & Reimer, P. J.. 1993b. CALIB User's Guide Rev 3.0.1. University of Washington, Quaternary Isotope Laboratory.Google Scholar
Taylor, R.E. 1987. Radiocarbon dating an archaeological perspective. San Diego (CA): Academic Press.Google Scholar
Taylor, R.E. 1991. Frameworks for dating the late Pleistocene peopling of the Americas, in Dillehay, T.D. & Meitzer, D. (ed.), The first Americans: search and research: 77111. Boca Raton (FL): CRC Press.Google Scholar
Taylor, R.E. 1992. Radiocarbon dating of bone: to collagen and beyond, in Taylor, R. E. et al. (ed.), Radiocarbon after four decades An interdisciplinary perspective: 375402. New York (NY): Springer-Verlag.Google Scholar
Van Der Plicht, J. 1993. The Groningen radiocarbon calibration program, Radiocarbon 35: 231–7.CrossRefGoogle Scholar
Ward, G. K. & Wilson, S. R.. 1978. Procedures for comparing and comgbining radiocarbon age determinations: a critique, Archaeometry 20: 1931.Google Scholar
Wormington, H. M. 1957. Ancient man in North America. Denver (CO): Denver Museum of Natural History.Google Scholar