Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T23:30:22.620Z Has data issue: false hasContentIssue false

Bone tool and tuber processing: a multi-proxy approach at Boyo Paso 2, Argentina

Published online by Cambridge University Press:  22 August 2018

Matías Medina*
Affiliation:
CONICET—División Arqueología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Unidad de Investigación Anexa al Museo, 60th and 122nd Avenue, La Plata (1900), Argentina
Laura López
Affiliation:
CONICET—División Arqueología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Unidad de Investigación Anexa al Museo, 60th and 122nd Avenue, La Plata (1900), Argentina
Natacha Buc
Affiliation:
CONICET—Instituto Nacional de Antropología y Pensamiento Latinoamericano, 3 de Febrero 1378, Buenos Aires (C.P. 1426), Argentina
*
*Author for correspondence (Email: [email protected])

Abstract

This article provides results from a full morphological, use-wear and microfossil residue analysis of a notched bone tool made from a camelid scapula, which was recovered from the late pre-Hispanic site of Boyo Paso 2 (1500–750 years BP, Sierras of Córdoba, Argentina). The use-wear pattern showed striations similar to those recorded in experimental bone tools used for scraping activities. The starch grains found on the active or working edge are similar to the Andean tuber crop Oxalis tuberosa, and suggest that the tool was used for peeling wild or domesticated Oxalis sp. tubers, thereby questioning the disproportionate attention directed towards maize in late pre-Hispanic economies.

Type
Research
Copyright
© Antiquity Publications Ltd, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. & Ussher, E.. 2013. Starch analysis reveals prehistoric plant translocation and shell tool use, Marquesas Islands, Polynesia. Journal of Archaeological Science 40: 27992812. https://doi.org/10.1016/j.jas.2013.02.011 Google Scholar
Anderson, P. 2013. Neolithic tools used for stripping ears from hulled cereals: an update, in P. Anderson, C. Cheval & A. Duran (ed.) Regards croisés sur les outils liés au travail des vegétaux. An interdisciplinary focus on plant-working tools: 89102. Antibes: Editions APDCA.Google Scholar
Averbouh, A. 2000. Technologie de la matière osseuse travaillée et implications paleothnologiques. L’exemple des chaînes d’exploitation du bois de cervidé chez les Magdaléniens des Pyrénées. Unpublished PhD dissertation, L’université de Paris I.Google Scholar
Babot, M. & Del, P.. 2009. Procesamiento de tubérculos y raíces por grupos agropastoriles del noroeste argentino prehispánico: análisis de indicadores de residuo de molienda, in A. Capparelli, A. Chavalier & R. Piqué (ed.) La alimentación en la América precolombina y colonial. Una aproximación interdisciplinaria: 6781. Madrid: Consejo Nacional de Investigaciones Científicas.Google Scholar
, 2011. Cazadores-recolectores de los Andes centro-sur y procesamiento vegetal. Una discusión desde la Puna Meridional Argentina (ca. 7000–3200 años AP). Chungara 43 (Número Especial 1): 413–32.Google Scholar
Barton, H. & Torrence, R. . 2015. Cooking up recipes for ancient starch: assessing current methodologies and looking to the future. Journal of Archaeological Science 56: 194201. https://doi.org/10.1016/j.jas.2015.02.031 Google Scholar
Beck, W. & Torrence, R.. 2006. Starch pathways, in R. Torrence & H. Barton (ed.) Ancient starch research: 5375. Walnut Creek (CA): Left Coast.Google Scholar
Behrensmeyer, A. 1978. Taphonomic and ecologic information from bone weathering. Paleobiology 4: 150162. https://doi.org/10.1017/S0094837300005820 Google Scholar
Berberián, E. 1984. Potrero de Garay: una entidad sociocultural tardía de la región serrana de la Provincia de Córdoba (Rep. Argentina). Comechingonia 4: 71138.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337360. https://doi.org/10.1017/S0033822200033865 Google Scholar
Buc, N. 2012. Tecnología Ósea de Cazadores-Recolectores del Humedal del Paraná Inferior (Bajíos Ribereños Meridionales). Buenos Aires: Asociación Amigos del Instituto Nacional de Antropologia y Pensamiento Latinoamericano.Google Scholar
Cadwallader, L., Beresford-Jones, D., Whaley, O. & O’Connell, T.. 2012. The signs of maize? A reconsideration of what δ13C values say about palaeodiet in the Andean region. Human Ecology 40: 487509. https://doi.org/10.1007/s10745-012-9509-0 Google Scholar
Capriles, J. 2014. The economic organization of early camelid pastoralism in the Andean Highlands of Bolivia (British Archaeological Reports International series 2587). Oxford: Archaeopress.Google Scholar
Cortella, A. & Pochettino, M.L.. 1995. Comparative morphology of starch of three Andean tubers. Starch 47: 455461. https://doi.org/10.1002/star.19950471202 Google Scholar
Crowther, A. 2012. The differential survival of native starch during cooking and implications for archaeological analyses: a review. Archaeological and Anthropological Science 4: 221235. https://doi.org/10.1007/s12520-012-0097-0 Google Scholar
Giorgis, M., Cingolani, A., Chiarini, F., Chiapella, J., Barboza, G., Ariza, L., Morero, L., Gurvich, D., Tecco, P., Subilis, R. & Cabido, M.. 2011. Composición florística del Bosque Chaqueño Serrano de la provincia de Córdoba, Argentina. Kurtziana 36: 943.Google Scholar
Griffitts, J. 2006. Bone tools and technological choice: change and stability on the Northern Plains. Unpublished PhD dissertation, University of Arizona.Google Scholar
Henry, A., Hudson, H. & Piperno, D.. 2009. Changes in starch grain morphologies from cooking. Journal of Archaeological Science 36: 915922. https://doi.org/10.1016/j.jas.2008.11.008 Google Scholar
Hogg, A., Hua, Q., Blackwell, P., Niu, M., Buck, C., Guilderson, T., Heaton, T., Palmer, J., Reimer, P., Reimer, R., Turney, C. & Zimmerman, S.. 2013. SHCal13 southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55: 18891903. https://doi.org/10.2458/azu_js_rc.55.16783 Google Scholar
Iriarte, J. 2006. New perpectives on plant domestication and the development of agriculture in the New World, in T. Denham, J. Iriarte & L. Vrydaghs (ed.) Rethinking agriculture. Archaeological and ethnoarchaeological perspectives: 167188. Walnut Creek (CA): Left Coast.Google Scholar
Killian Galvan, V., Samec, C. & Panarello, H.. 2016. When maize is not the first choice: advances in paleodietary studies in the archaeological site Río Doncellas (Jujuy, Argentina). Anthropological Review 79: 265279. https://doi.org/10.1515/anre-2016-0020 Google Scholar
Kononenko, N., Torrence, R., Barton, H. & Hennell, A.. 2010. Cross-cultural interaction on Wuvulu Island, Papua New Guinea: the perspective from use-wear and residue analyses of turtle bone artifacts. Journal of Archaeological Science 37: 29112919. https://doi.org/10.1016/j.jas.2010.07.001 Google Scholar
Korstanje, A. 2015. Andenes en los Andes: paisajes agrícolas tardíos sin maíz, in P. Cruz, R. Joffre & T. Winkel (ed.) Racionalidades campesinas en los Andes del Sur. Reflexiones en Torno al cultivo de la quinoa y otros vegetales Andinos: 2157. Jujuy: EDIUNJU.Google Scholar
Korstanje, A. & Babot, M.P.. 2007. Microfossils characterization from south Andean economic plants, in M. Madella & D. Zurro (ed.) Plants, people and places: recent studies in phytolith analysis: 4172. Cambridge: Oxbow.Google Scholar
Laguens, A. & Bonnin, M.. 2009. Sociedades indígenas de las Sierras Centrales. Arqueología de Córdoba y San Luis. Córdoba: Editorial de la Universidad Nacional de Córdoba. https://doi.org/10.1002/oa.1064 Google Scholar
Laguens, A., Fabra, M., Santos, G. & Demarchi, D.. 2009. Paleodietary inferences base on isotopic data for pre-Hispanic population of the Central Mountain of Argentina. International Journal of Osteoarchaeology 19: 237249. https://doi.org/10.1002/oa.1064 Google Scholar
Lanjegans, G.H.J. 2011. Discerning use-related micro-residues on tools: testing the multi-standed approach for archaeological studies. Journal of Archaeological Science 38: 9851000. https://doi.org/10.1016/j.jas.2010.11.013 Google Scholar
Legrand, A. 2007. Fabrication et utilisation de l’outillage en matières osseuses du Néolithique de Chypre: Khirokitia et Cap Andreas-Kastros (British Archaeological Report series 1678). Oxford: Archaeopress.Google Scholar
Li, E., Dhital, S. & Hasjim, J.. 2014. Effects of grain milling on starch structures and flour/starch properties. Starch 66: 1527. https://doi.org/10.1002/star.201200224 Google Scholar
Llano, C. 2014. La explotación de los recursos vegetales en sociedades cazadoras-recolectoras del sur de Mendoza, Argentina. Darwiniana 2(1): 96111. https://doi.org/10.14522/darwiniana.2014.21.549 Google Scholar
López, L. & Recalde, M.A.. 2015. Análisis de las primeras evidencias de producción y consumo de recursos vegetales para el Norte de Córdoba. Paper presented at the II Taller de Arqueología de la Sierra de Ancasti y Zonas Aledañas, Anquicila, 8–10 October 2015.Google Scholar
, 2016. The first quinoa (Chenopodium quinoa wild) macrobotanical remains at Sierras del Norte (Central Argentina) and their implication in pre-Hispanic subsistence practices. Journal of Archaeological Science: Reports 8: 426433. https://doi.org/10.1016/j.jasrep.2016.06.053 Google Scholar
López, L., Medina, M. & Rivero, D.. 2015. First records of Chenopodium spp./Amaranthus spp. starch grains and their relevance to the study of the Late Holocene human subsistence in central Argentina. The Holocene 25: 288295. https://doi.org/10.1177/0959683614558652 Google Scholar
López Campeny, M. 2016. El textil antes del textil. Análisis de instrumental arqueológico como referente de prácticas de producción textil. Boletín del Museo Chileno de Arte Precolombino 21: 119136. https://doi.org/10.4067/S0718-68942016000200008 Google Scholar
Loy, T. 1994. Methods in the analysis of starch residues on prehistoric stone tools, in J. Hather (ed.) Tropical archaeobotany: applications and new developments: 86111. London: Routledge.Google Scholar
Luik, H., Ots, M. & Maldre, L.. 2011. From the Neolithic to Bronze Age: continuity and changes in the bone artifacts in Saaremaa, Estonia, in J. Baron & B. Kufel-Diakowska (ed.) Written in bones. Studies on technological and social contexts of past faunal skeletal remains: 243261. Wrocławski: Uniwersytet Wrocławski.Google Scholar
Lyman, R. 1994. Vertebrate taphonomy. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139878302 Google Scholar
Madella, M., Alexandre, A. & Ball, T.. 2005. International code for phytolith nomenclature 1.0. Annals of Botany 96: 253260. https://doi.org/10.1093/aob/mci172 Google Scholar
Marcellino, A., Berberián, E. & Perez, J.. 1967. El yacimiento arqueológico de Los Molinos (Dpto. Calamuchita, Córdoba). Publicaciones del Instituto de Antropología XXVI : 168.Google Scholar
Medina, M. & Pastor, S.. 2012. Zooarqueología de sitios residenciales tardíos de las Sierras de Córdoba (Argentina, ca. 1100–300 AP): avances y perspectivas, in A. Acosta, D. Loponte & L. Mucciolo (ed.) Temas de arqueología, estudios tafonómicos y zooarqueológicos II: 4566. Buenos Aires: Instituto Nacional de Antropología y Pensamiento Latinoamericano.Google Scholar
Medina, M., Lopez, L. & Berberián, E.. 2009. Agricultura y recolección en el tardío prehispánico de las Sierras de Córdoba (Argentina): el registro arqueobotánico de C.Pun.39. Arqueología 15: 217230.Google Scholar
Medina, M., Buc, N. & Pastor, S.. 2014. Intensificación y dinámica ocupacional en el periodo prehispánico tardío de las Sierras de Córdoba (Argentina): una aproximación desde el registro artefactual óseo. Chungara 46: 7390. https://doi.org/10.4067/S0717-73562014000100005 Google Scholar
Medina, M., Pastor, S. & Recalde, M.A.. 2016. The archaeological landscape of late prehispanic mixed foraging and cultivation economy (Sierras of Córdoba, Argentina). Journal of Anthropological Archaeology 42: 88104. https://doi.org/10.1016/j.jaa.2016.04.003 Google Scholar
Medina, M., Grill, S., Fernandez, A. & López, L.. 2017. Anthropogenic pollen, foraging and crops during Sierras of Córdoba late prehispanic period (Argentina). The Holocene (OnlineFirst) : 112. https://doi.org/10.1177/0959683617708445 Google Scholar
Moore, K. 1999. Chiripa worked bone and bone tools, in C.A. Hastorf (ed.) Early settlement at Chiripa Bolivia: research of the Taraco Archaeological Project: 7393. Berkeley: University of California.Google Scholar
Nelson, M. 1991. The study of technological organization. Advances in Archaeological Method and Theory 3: 57100.Google Scholar
Northe, A. 1999. Notched implements made of scapulae—still a problem, in A. Choyke & L. Bartosiewicz (ed.) Crafting bone-skeletal technologies through time and space (British Archaeological Reports International series 937) : 179184. Oxford: Archaeopress.Google Scholar
Ochoa, J. & Ladio, A.. 2015. Current use of wild plants with edible underground storage organs in a rural population of Patagonia: between tradition and change. Journal of Ethnobiology and Ethnomedicine 11: 70.https://doi.org/10.1186/s13002-015-0053-z Google Scholar
Pastor, S. & Berberián, E.. 2007. Arqueología del sector central de las Sierras de Córdoba (Argentina). Hacia una definición de los procesos sociales del período prehispánico tardío (900–1573 d.C.). Intersecciones en Antropología 8: 3147.Google Scholar
Pastor, S. & López, L.. 2010. Consideraciones sobre la agricultura prehispánica en el sector central de las Sierras de Córdoba, in A. Korstanje & M. Quesada (ed.) Arqueología de la agricultura: casos de estudio en la región Andina Argentina: 208233. Tucumán: Editorial Magma.Google Scholar
Perry, L. 2004. Starch analyses reveal the relationship between tool type and function: an example from the Orinoco Valley of Venezuela. Journal of Archaeological Science 31: 10691081. https://doi.org/10.1016/j.jas.2004.01.002 Google Scholar
, 2007. Starch remains, preservation biases and plant histories: an example from highland Peru, in T. Denham, J. Iriarte & L. Vrydaghs (ed.) Rethinking agriculture. Archaeological and ethnoarchaeological perspectives: 241255. Walnut Creek (CA): Left Coast.Google Scholar
Piperno, D. 2006. Phytoliths. A comprehesive guide for archaeologists and paleoecologists. Lanham (MD): Altamira.Google Scholar
Piperno, D. & Holst, I.. 1998. The presence of starch grains on prehistoric stone tools from de-humid neotropics: indications of early tuber use and agriculture en Panamá. Journal of Archaeological Science 25: 765776. https://doi.org/10.1006/jasc.1997.0258 Google Scholar
Piperno, D., Ranere, A., Holst, I. & Hansell, P.. 2000. Starch grains reveal early root crop horticulture in the Panamanian tropical forest. Nature 407: 894897. https://doi.org/10.1038/35038055 Google Scholar
Pochettino, M.L. 2015. Botánica económica. Las plantas interpretadas según tiempo, espacio y cultura. Buenos Aires: Sociedad Argentina de Botánica.Google Scholar
Serrano, A. 1945. Los Comechingones (Serie Aborígenes Argentinos I). Córdoba: Instituto de Arqueología, Lingüística y Folklore de la Universidad Nacional de Córdoba.Google Scholar
Stone, E. 2011. Through the eye of the needle: investigations of ethnographic, experimental, and archaeological bone tool use wear from perishable technologies. Unpublished PhD dissertation, University of New Mexico.Google Scholar
Stordeur, D. & Anderson-Gerfaud, P.. 1985. Les omoplates encochées Néolithiques de Ganj Dareh (Iran). Étude morphologique et fonctionnelle. Cathiers de l’Euphrate 4: 289313.Google Scholar
Ugent, D., Dillehay, T. & Ramirez, C.. 1987. Potato remains from a Late Pleistocene settlement in south-central Chile. Economic Botany 41: 1727. https://doi.org/10.1007/BF02859340 Google Scholar