Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T22:49:05.109Z Has data issue: false hasContentIssue false

Application of sky-view factor for the visualisation of historic landscape features in lidar-derived relief models

Published online by Cambridge University Press:  02 January 2015

Žiga Kokalj*
Affiliation:
Institute of Anthropological and Spatial Studies, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Novi trg 2, SI-1000 Ljubljana, Slovenia Space-Si – Centre of Excellence for Space Sciences and Technologies, Aškerčeva 12, SI-1000 Ljubljana, Slovenia
Klemen Zakšek
Affiliation:
Space-Si – Centre of Excellence for Space Sciences and Technologies, Aškerčeva 12, SI-1000 Ljubljana, Slovenia University of Hamburg, Institute of Geophysics, Bundesstrasse 55, D-20146 Hamburg, Germany
Krištof Oštir
Affiliation:
Institute of Anthropological and Spatial Studies, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Novi trg 2, SI-1000 Ljubljana, Slovenia Space-Si – Centre of Excellence for Space Sciences and Technologies, Aškerčeva 12, SI-1000 Ljubljana, Slovenia

Extract

Aerial mapping and remote sensing takes another step forward with this method of modelling lidar data. The usual form of presentation, hill shade, uses a point source to show up surface features. Sky-view factor simulates diffuse light by computing how much of the sky is visible from each point. The result is a greatly improved visibility — as shown here by its use on a test site of known topography in Slovenia.

Type
Research article
Copyright
Copyright © Antiquity Publications Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bewley, R., Crutchley, S. & Shell, C. 2005. New light on an ancient landscape: lidar survey in the Stonehenge World Heritage Site. Antiquity 79: 636–47.CrossRefGoogle Scholar
Bourbia, F. & Awbi, H.B. 2004. Building cluster and shading in urban canyon for hot dry climate, Part 1: air and surface temperature measurements. Renewable Energy 29: 249–62.CrossRefGoogle Scholar
Brassel, K. 1974. A model for automatic hill-shading. Cartography and Geographic Information Science 1: 1527.Google Scholar
Briese, C., Mandlburger, G., Ressl, C. & Brockmann, H. 2009. Automatic break line determination for the generation of a DTM along the river Main. Laser Scanning 38(3/W8): 236–41.Google Scholar
Challis, K., Forlin, P. & Kincey, M. In press. A generic toolkit for the visualisation of archaeological features on airborne lidar elevation data. Archaeological Prospection.Google Scholar
Challis, K., Kokalj, Ž., Kincey, M., Moscrop, D. & Howard, A.J. 2008. Airborne lidar and historic environment records. Antiquity 82: 1055–64.CrossRefGoogle Scholar
Ciglenečki, S. 1998. Tonovcov grad near Kobarid: an archaeological site. A guide. Ljubljana & Kobarid: Znanstvenoraziskovalni Center SAZU.Google Scholar
Devereux, B.J., Amable, G.S, Crow, P. & Cliff, A.D. 2005. The potential of airborne lidar for detection of archaeological features under woodland canopies. Antiquity 79: 648–60.CrossRefGoogle Scholar
Devereux, B.J., Amable, G.S. & Crow, P. 2008. Visualisation of LiDAR terrain models for archaeological feature detection. Antiquity 82: 470–79.CrossRefGoogle Scholar
Doneus, M., Briese, C., Fera, M. & Janner, M. 2008. Archaeological prospection of forested areas using full-waveform airborne laser scanning. Journal of Archaeological Science 35: 882–93.CrossRefGoogle Scholar
Duffie, J.A. & Beckman, W.A. 1991. Solar engineering of thermal processes. Second edition. New York: Wiley-Interscience.Google Scholar
Hesse, R. 2010. LiDAR-derived local relief models—a new tool for archaeological prospection. Archaeological Prospection 17: 6772.Google Scholar
Horn, B. 1981. Hill shading and the reflectance map. Proceedings of the Institute of Electrical and Electronics Engineers 69: 1447.CrossRefGoogle Scholar
Imhof, E. 1982. Cartographic relief presentation. Berlin & New York: Walter de Gruyter.CrossRefGoogle Scholar
ITT Visual Information Solutions. 2010. ENVI Software-Image Processing & Analysis Solutions. Available at: http://www.ittvis.com/ProductServices/ENVI.aspx (accessed November 9, 2009).Google Scholar
Kennelly, P.J. 2008. Terrain maps displaying hill-shading with curvature. Geomorphology 102: 567–77.CrossRefGoogle Scholar
Kershaw, A. 2003. Hadrian's Wall national mapping programme -a World Heritage Site from the air. Archaeological Prospection 10: 159–61.CrossRefGoogle Scholar
Kim, J.R., Muller, J., Gasselt, S.V., Morley, J.G., Neukum, G. & The HRSC COI Team. 2005. Automated crater detection, a new tool for Mars cartography and chronology. Photogrammetric Engineering and Remote Sensing 71: 1205–17.CrossRefGoogle Scholar
Knific, T. 2004. Na stičišču treh svetov: arheološki podatki o Goriški v zgodnjem srednjem veku. Goriški letnik 29: 530.Google Scholar
Kobler, A., Pfeifer, N., Ogrinc, P., Todorovski, L., Oštir, K. & Džeroski, S. 2007. Repetitive interpolation: a robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sensing of Environment 108: 923.CrossRefGoogle Scholar
Kweon, I.S. & Kanade, T. 1994. Extracting topographic terrain features from elevation maps. CVGIP: Image Understanding 59: 171–82.CrossRefGoogle Scholar
López, A. M., Lumbreras, F., Serrat, J. & Villanueva, J.J. 1999. Evaluation of methods for ridge and valley detection. Institute of Electrical and Electronics Engineers Transactions on Pattern Analysis and Machine Intelligence 21: 327–35.Google Scholar
Marks, D., Dozier, J. & Davis, R. 1979. Clear-sky longwave radiation model for remote alpine areas. Archiv für Meteorologie, Geophysik und Bioklimatologie Serie B-Klimatologie Umweltmeteorologie Strahlungsforschung 27: 159–87.CrossRefGoogle Scholar
Osmuk, N. 1992. Na lupu (Sv. Helena). Varstvo spomenikov 34: 273.Google Scholar
Robinson, D. 2006. Urban morphology and indicators of radiation availability. Solar Energy 80: 1643–8.CrossRefGoogle Scholar
Sittler, B. 2004. Revealing historical landscapes by using airborne laser—scanning -a 3D-model of ridge and furrow in forests near Rastatt (Germany). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 36(8/W2): 258–61.Google Scholar
Tian, Y.Q., Davies-Colley, R.J., Gong, P. & Thorrold, B.W. 2001. Estimating solar radiation on slopes of arbitrary aspect. Agricultural and Forest Meteorology 109: 6774.CrossRefGoogle Scholar
Wladis, D. 1999. Automatic lineament detection using digital elevation models with second derivative filters. Photogrammetric Engineering and Remote Sensing 65: 453–8.Google Scholar
Wood, J. 1996. The geomorphological characterisation of digital elevation models. PhD dissertation, University of Leicester. Available at: http://www.soi.city.ac.uk/jwo/phd (accessed December 7, 2009).Google Scholar
Yard, M.D., Bennett, G.E., Mietz, S.N., Coggins, L.G. JR., Stevens, L.E., Hueftle, S. & Blinn, D.W. 2005. Influence of topographic complexity on solar insolation estimates for the Colorado River, Grand Canyon, AZ. Ecological Modelling 183: 157–72.CrossRefGoogle Scholar
Yoëli, P. 1965. Analytische Schattierung. Ein kartographischer Entwurf. Kartographische Nachrichten 15(5): 141–8.Google Scholar
Zrc Sazu. 2010. IAPS ZRC SAZU [Institute of Anthropological and Spatial Studies ZRC SAZU]. Available at: http://iaps.zrc-sazu.si/index.php?q=en/svf (accessed November 9, 2010).Google Scholar