Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T15:59:50.787Z Has data issue: false hasContentIssue false

Anaemia (thalassaemia) in the Middle Euphrates Valley of Syria in the second–fourth centuries AD?

Published online by Cambridge University Press:  17 February 2016

Jacek Tomczyk*
Affiliation:
Department of Biological Anthropology, Cardinal Stefan Wyszynski University, 01–938 Warsaw, Wóycickiego 1/3, Poland
Piotr Palczewski
Affiliation:
1st Department of Clinical Radiology, Warsaw Medical University, 02–004 Warsaw, Chałubińskiego 5, Poland
Hanna Mańkowska-Pliszka
Affiliation:
Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, 02–004 Warsaw, Chałubińskiego 5, Poland
Tomasz Płoszaj
Affiliation:
Department of Molecular Biology, Medical University of Lodz, 90–136 Lodz, Narutowicza 60, Poland
Krystyna Jędrychowska-Dańska
Affiliation:
Department of Molecular Biology, Medical University of Lodz, 90–136 Lodz, Narutowicza 60, Poland
Henryk W. Witas
Affiliation:
Department of Molecular Biology, Medical University of Lodz, 90–136 Lodz, Narutowicza 60, Poland

Abstract

The migration of individuals and populations was a powerful factor in the spread of diseases among early human societies. Analysis of human remains from Tell Masaikh in the Middle Euphrates Valley provides a striking example in what is probably the earliest case of hereditary anaemia. Skeletal changes were consistent with thalassaemia, an uncommon disease in the steppe areas of Syria. Genetic analyses of the remains confirmed the pathological assessment and also suggested that the individual was of Asian descent, from the Indian Peninsula. Such an ancestry could then explain this unusual occurrence of thalassaemia.

Type
Research
Copyright
Copyright © Antiquity Publications Ltd, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Amero, K.K., Larruga, J.M., Cabrera, V.M. & Gonzalez, A.M.. 2008. Mitochondrial DNA structure in the Arabian Peninsula. BMC Evolutionary Biology 8: 45. http://dx.doi.org/10.1186/1471-2148-8-45 Google Scholar
Abu-Amero, K.K., Cabrera, V.M., Larruga, J.M., Osman, E.A., Gonzalez, A.M. & Al-Obeidan, S.A.. 2011. Eurasian and sub-Saharan African mitochondrial DNA haplogroup influences pseudoexfoliation glaucoma development in Saudi patients. Molecular Vision 17: 543–47.Google Scholar
Bassimitici, S., Yucel-Eroglu, E. & Akalar, M.. 1996. Effects of thalassaemia major on components of the craniofacial complex. British Journal of Orthodontics 2: 157–62. http://dx.doi.org/10.1179/bjo.23.2.157 CrossRefGoogle Scholar
Brickley, M. & Ives, R.. 2006. Skeletal manifestations of infantile scurvy. American Journal of Physical Anthropology 129: 163–72. http://dx.doi.org/10.1002/ajpa.20265 Google Scholar
Brown, M. & Ortner, D.J.. 2011. Childhood scurvy in a medieval burial from Mačvanska Mitrovica, Serbia. International Journal of Osteoarchaeology 21: 197207. http://dx.doi.org/10.1002/oa.1124 CrossRefGoogle Scholar
Fernandez, E. 2005. Polimorfismos de DNA mitocondrial en poblaciones antiguas de la cuenca mediterránea. Unpublished PhD dissertation, Universitat de Barcelona.Google Scholar
Filon, D., Faerman, M., Smith, P. & Oppenheim, A.. 1995. Sequence analysis reveals a β-thalassaemia mutation in the DNA of skeletal remains from the archaeological site of Akhziv, Israel. Nature Genetics 9: 365–68. http://dx.doi.org/10.1038/ng0495-365 CrossRefGoogle ScholarPubMed
Graver, A.M., Molto, J.E., Parr, R.L., Walters, S., Praymak, C.R. & Maki, J.M.. 2001. Mitochondrial DNA research in the Dakhleh Oasis, Egypt: a preliminary report. Ancient Biomolecules 3: 239–53.Google Scholar
Grayson, A.K. 1991. Assyrian rulers of the early first millennium B.C. I (1114–859 B.C.). Toronto: University of Toronto Press.Google Scholar
Hershkovitz, I. & Edelson, G.. 1991. The first-identified case of thalassaemia. Human Evolution 1: 4954. http://dx.doi.org/10.1007/BF02435606 Google Scholar
Hershkovitz, I., Bruce, M., Rothschild, M., Latimer, B., Dutour, O., Léonetti, G., Greenwald, C.M., Rothschild, C. & Jellema, L.M.. 1997. Recognition of sickle cell anemia in skeletal remains of children. American Journal of Physical Anthropology 104: 213–26. http://dx.doi.org/10.1002/(SICI)1096-8644(199710)104:2<213::AID-AJPA8>3.0.CO;2-Z 3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Hilliard, L.M. & Berkow, R.L.. 1996. The thalassaemia syndromes. Cardiovascular Update 5: 157–62. http://dx.doi.org/10.1016/1068-607x(96)00017-0 Google Scholar
Keenleyside, A. & Panayotova, K.. 2006. Cribra orbitalia and porotic hyperostosia in a Greek colonial population (5th to 3rd centuries BC) from the Black Sea. International Journal of Osteoarchaeology 16: 373–84. http://dx.doi.org/10.1002/oa.831 Google Scholar
Kirleis, W. & Herles, M.. 2007. Climate change as a reason for Assyro-Aramaen conflicts? Pollen evidence for drought at the end of the 2nd millennium BC. State Archives of Assyria Bulletin 16: 735.Google Scholar
Kloss-Brandstatter, A., Pacher, D., Schonherr, S., Weissensteiner, H., Binna, R., Specht, G. & Kronenberg, F.. 2010. HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Human Mutation 32: 2532. http://dx.doi.org/10.1002/humu.21382 CrossRefGoogle ScholarPubMed
Kong, Q.P., Sun, C., Wang, H.-W., Zhao, M., Wang, W.Z., Zhong, L., Hao, X.D., Pan, H., Wang, S.Y., Cheng, Y.T., Zhu, C.L., Wu, S.F., Liu, L.N., Jin, J.Q., Yao, Y.G. & Zhang, Y.P.. 2011. Large-scale mtDNA screening reveals a surprising matrilineal complexity in east Asia and its implications for the peopling of the region. Molecular Biology and Evolution 28: 513–22. http://dx.doi.org/10.1093/molbev/msq219 Google Scholar
Lagia, A., Eliopoulos, C. & Manolis, S.. 2007. Thalassaemia: macroscopic and radiological study of a case. International Journal of Osteoarchaeology 17: 269–85. http://dx.doi.org/10.1002/oa.881 Google Scholar
Lawson, J.P., Ablow, R.C. & Pearson, H.A.. 1981. The ribs in thalassaemia II. The pathogenesis of the changes. Radiology 140: 673–79. http://dx.doi.org/10.1148/radiology.140.3.7280234 Google Scholar
Lee, H.Y., Song, I., Ha, E., Cho, S.B., Yang, W.L. & Shin, K.J.. 2008. mtDNAmanager: a web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences. BMC Bioinformatics 9: 483. http://dx.doi.org/10.1186/1471-2105-9-483 CrossRefGoogle ScholarPubMed
Lewis, M.E. 2012. Thalassaemia: its diagnosis and interpretation in past skeletal populations. International Journal of Osteoarchaeology 22: 685–93. http://dx.doi.org/10.1002/oa.1229 Google Scholar
Masetti-Rouault, M.G. 2008. Rapporto preliminare sui lavori della missione nel sito di Tell Masaikh (MK11). Athenaeum—Studi di Letteratura e Storia dell'Antichità 96: 914–15.Google Scholar
Masetti-Rouault, M.G. 2010. Rural economy and steppe management in an Assyrian colony in the west: a view from Tell Masaikh, Lower-Middle Euphrates, Syria. Studia Chaburensia 1: 129–50.Google Scholar
Nathan, H. & Haas, H.. 1966. ‘Cribra orbitalia’. A bone condition of the orbit of unknown nature. Anatomical study with etiological considerations. Israel Journal of Medical Science 2: 171–91.Google Scholar
Ortner, D.J. & Putschar, W.G.J.. 1985. Identification of pathological conditions in human skeletal remains. Washington, D.C.: Smithsonian Institution.Google Scholar
Oxenham, M.F. & Cavill, I.. 2010. Porotic hyperostosis and cribra orbitalia: the erythropoietic response to iron-deficiency anaemia. Anthropological Science 118: 199200. http://dx.doi.org/10.1537/ase.100302 CrossRefGoogle Scholar
Palanichamy, M.G., Mitra, B., Debnath, M., Agrawal, S., Chaudhuri, T.K. & Zhang, Y.P.. 2014. Tamil merchant in ancient Mesopotamia. PLoS ONE 9 (10): e109331. http://dx.doi.org/10.1371/journal.pone.0109331 Google Scholar
Pasvol, G. & Abdalla, S.. 1999. Anemia, in Guerrant, R., Walker, D. & Weller, P. (ed.) Tropical infectious diseases: 1551–64. Philadelphia (PA): Churchill Livingstone.Google Scholar
Ponec, D.J. & Resnick, D.. 1984. On the etiology and pathogenesis of porotic hyperostosis of the skull. Investigative Radiology 19: 313–17. http://dx.doi.org/10.1097/00004424-198407000-00014 Google Scholar
Postgate, J.N. 1992. Early Mesopotamia: society and economy at the dawn of history. London: Routledge.Google Scholar
Resnick, D. 2002. Diagnosis of bone and joint disorders. Philadelphia (PA): W.B. Saunders.Google Scholar
Richards, M., Macaulay, V., Hickey, E., Vega, E., Sykes, B., Guida, V., Rengo, C., Sellitto, D., Cruciani, F., Kivisild, T., Villems, R., Thomas, M., Rychkov, S., Rychkov, O., Rychkov, Y., Gölge, M., Dimitrov, D., Hill, E., Bradley, D., Romano, V., Calì, F., Vona, G., Demaine, A., Papiha, S., Triantaphyllidis, C., Stefanescu, G., Hatina, J., Belledi, M., Di Rienzo, A., Oppenheim, A., Nørby, S., Al-Zaheri, N., Santachiara-Benerecetti, S., Scozzari, R., Torroni, A. & Bandelt, H.J.. 2000. Tracing European founder lineages in the Near Eastern mtDNA pool. American Journal of Human Genetics 67: 1251–76. http://dx.doi.org/10.1016/S0002-9297(07)62954-1 Google Scholar
Salvadei, L., Ricci, F. & Manzi, G.. 2001. Porotic hyperostosis as a marker of health and nutritional conditions during childhood: studies at the transition between imperial Rome and the Early Middle Ages. American Journal of Human Biology 13: 709–17. http://dx.doi.org/10.1002/ajhb.1115 Google Scholar
Stuart-Macadam, P. 1985. Porotic hyperostosis: representative of a clinical childhood condition. American Journal of Physical Anthropology 66: 391–98. http://dx.doi.org/10.1002/ajpa.1330660407 Google Scholar
Stuart-Macadam, P. 1987. A radiographic study of porotic hyperostosis. American Journal of Physical Anthropology 74: 511–20. http://dx.doi.org/10.1002/ajpa.1330740409 Google Scholar
Thangaraj, K., Chaubey, G., Kivisild, T., Reddy, A.G., Singh, V.K., Rasalkar, A.A. & Singh, L.. 2005. Reconstructing the origin of Andaman Islanders. Science 308: 996. http://dx.doi.org/10.1126/science.1109987 Google Scholar
Tomczyk, J. 2013. Preliminary report on human remains from Tell Masaikh and Tell Ashara. Season 2008. Studia Ecologiae et Bioethicae 11: 101–11.CrossRefGoogle Scholar
Tomczyk, J., Jędrychowska-Dańska, K., Płoszaj, T. & Witas, H.W.. 2011. Anthropological analysis of the osteological material from an ancient tomb (Early Bronze Age) from the Middle Euphrates Valley, Terqa (Syria). International Journal of Osteoarchaeology 21: 435–45. http://dx.doi.org/10.1002/oa.1150 Google Scholar
Walker, R.A. & Lovejoy, C.O.. 1985. Radiographic changes in the clavicle and proximal femur, and their use in the determination of skeletal age at death. American Journal of Physical Anthropology 38: 6778. http://dx.doi.org/10.1002/ajpa.1330680107 CrossRefGoogle Scholar
Walker, P.L., Bathurst, R., Richman, R., Gjerdrum, T. & Andrushko, V.. 2009. The causes of porotic hyperostosis and cribra orbitalia: a reappraisal of the iron-deficiency anaemia hypothesis. American Journal of Physical Anthropology 139: 109–25. http://dx.doi.org/10.1002/ajpa.21031 Google Scholar
Weiss, H. 1991. Archaeology in Syria. American Journal of Archaeology 95: 683740. http://dx.doi.org/10.2307/505899 Google Scholar
White, T.D. & Folkens, P.A.. 2000. Human osteology. San Diego (CA): Academic Press.Google Scholar
Whitfield, S. & Sims-Williams, U.. 2004. The Silk Road: trade, travel, war and faith. Chicago (IL): Serindia.Google Scholar
Winters, M., Barta, J.L., Monroe, C. & Kemp, B.M.. 2011. To clone or not to clone: method analysis for retrieving consensus sequences in ancient DNA samples. PloS ONE 6 (6):e21247. http://dx.doi.org/10.1371/journal.pone.0021247 Google Scholar
Witas, H., Tomczyk, J., Jędrychowska-Dańska, K., Chaubey, G. & Płoszaj, T.. 2013. mtDNA from the Early Bronze Age to the Roman period suggests a genetic link between the Indian subcontinent and the Mesopotamian cradle of civilization. PLoS ONE 8 (9): e73682. http://dx.doi.org/10.1371/journal.pone.0073682 Google Scholar