Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T01:58:28.542Z Has data issue: false hasContentIssue false

European Middle and Upper Palaeolithic radiocarbon dates are often older than they look: problems with previous dates and some remedies

Published online by Cambridge University Press:  02 January 2015

Thomas Higham*
Affiliation:
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, UK

Extract

Few events of European prehistory are more important than the transition from ancient to modern humans around 40 000 years ago, a period that unfortunately lies near the limit of radiocarbon dating. This paper shows that as many as 70 per cent of the oldest radiocarbon dates in the literature may be too young, due to contamination by modern carbon. Future dates can be made more secure — and previous dates revised — using more refined methods of pre-treatment described here.

Type
Research article
Copyright
Copyright © Antiquity Publications Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrose, S.H. 1990. Preparation and characterisation of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17: 431–51.CrossRefGoogle Scholar
Andersen, K.K., Svensson, A., Johnsen, S.J., Rasmussen, S.O., Bigler, M., Röthlisberger, R., Ruth, U., Siggaard-Andersen, M. L., Steffensen, J.-P. & Dahl-Jensen, D. 2006. The Greenland ice core chronology 2005, 15–42 ka, Part 1: constructing the time scale. Quaternary Science Reviews 25: 3246–57.CrossRefGoogle Scholar
Beck, J.W., Richards, D.A., Edwards, R.L., Silverman, B.W., Smart, P.L., Donahue, D.J., Hererra-Osterheld, S., Burr, G.S., Calsoyas, L., Jull, A.J.T. & Biddulph, D. 2001. Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292: 2453–8.CrossRefGoogle ScholarPubMed
Bird, M.I., Ayliffe, L.K., Fifield, L.K., Turney, C.S.M., Cresswell, R.G., Barrows, T.T. & David, B. 1999. Radiocarbon dating of 'old' charcoal using a wet oxidation-stepped combustion procedure. Radiocarbon 41: 127–40.CrossRefGoogle Scholar
Blaauw, M., Wohlfarth, B., Christen, J. Andrés, Ampel, L., Veres, D., Hughen, K.A., Preusser, F. & Svensson, A. 2010. Were last glacial climate events simultaneous between Greenland and France? A quantitative comparison using non-tuned chronologies. Journal of Quaternary Science 25: 387–94.CrossRefGoogle Scholar
Bocquet-Appel, P. & Demars, P. Y. 2000. Neanderthal contraction and modern human colonisation in Europe. Antiquity 74: 544–52.CrossRefGoogle Scholar
Brock, F. & Higham, T.F.G. 2009. AMS radiocarbon dating of Paleolithic-aged charcoal from Europe and the Mediterranean rim using ABOx-SC. Radiocarbon 51: 839–46.CrossRefGoogle Scholar
Brock, F., Higham, T.F.G., Ditchfield, P. & Ramsey, C. Bronk. 2010. Current pre-treatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52: 103–12.CrossRefGoogle Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program OxCal. Radiocarbon 43: 355–63.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51: 1023–45.CrossRefGoogle Scholar
Bronk Ramsey, C., Higham, T., Bowles, A. & Hedges, R.E.M. 2004. Improvements to the pre-treatment of bone at Oxford. Radiocarbon 46: 155–63.CrossRefGoogle Scholar
Brown, T.A., Nelson, D.E., Vogel, J.S. & Southon, J.R. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30: 171–7.CrossRefGoogle Scholar
Chappell, J., Head, J. & Magee, J. 1996. Beyond the radiocarbon limit in Australian archaeology and Quaternary research. Antiquity 70: 543–52.CrossRefGoogle Scholar
Conard, N.J. & Bolus, M. 2003. Radiocarbon dating the appearance of modern humans and timing of cultural innovations in Europe: new results and new challenges. Journal of Human Evolution 44: 331–71.CrossRefGoogle ScholarPubMed
Conard, N.J. & Bolus, M. 2008. Radiocarbon dating the late Middle Paleolithic and the Aurignacian of the Swabian Jura. Journal of Human Evolution 55: 886–97.CrossRefGoogle ScholarPubMed
Currant, A. & Jacobi, R. 1997. Vertebrate faunas of the British Late Pleistocene and the chronology of human settlement. Quaternary Newsletter 82: 18.Google Scholar
Currant, A. & Jacobi, R. 2001. A formal mammalian biostratigraphy for the Late Pleistocene of Britain. Quaternary Science Reviews 20: 1707–16.CrossRefGoogle Scholar
De Torres, T., Ortiz, J. E., Grün, R., Eggins, S., Valladas, H., Mercier, N., Tisnérat-Laborde, N., Juliá, R., Soler, V., Martínez, E., Sánchez-Moral, S., Cañaveras, J.C., Lario, J., Badal, E., Lalueza-Fox, C., Rosas, A., Santamaría, D., Rasilla, M. De La & Fortea, J. 2010. Dating of the hominid (Homo neanderthalensis) remains accumulation from El Sidrón Cave (Piloña, Asturias, north Spain): an example of a multi-methodological approach to the dating of Upper Pleistocene sites. Archaeometry 52: 680705. doi: 10.1111/j.1475–4754.2009.00491.Google Scholar
De Vivo, B., Rolandi, G., Gans, P.B., Calvert, A., Bohrson, W.A., Spera, F.J. & Belkin, H.E. 2001. New constraints on the pyroclastic eruptive history of the Campanian volcanic plain (Italy). Mineralogy and Petrology 73: 4765.CrossRefGoogle Scholar
Dolukhanov, P. & Shukurov, A. 2004. Colonisation of northern Eurasia by early modern humans as viewed through the evidence of radiocarbon dating, in Higham, T.F.G., Ramsey, C. Bronk & Owen, D.C. (ed.) Radiocarbon and archaeology: fourth international symposium, St. Catherine's College, Oxford, 9–14 April 2002: conference proceedings: 5361. Oxford: Oxford University School of Archaeology.Google Scholar
Douka, K., Higham, T. & Sinitsyn, A. 2010. The influence of pre-treatment chemistry on the radiocarbon dating of Campanian Ignimbrite-aged charcoal from Kostenki 14 (Russia). Quaternary Research: 73: 583–7. doi:10.1016/ j.yqres.2010.01.002CrossRefGoogle Scholar
Fortea, J., Rasilla, M. De La, MartíNez, E., SáNchez-Moral, S., Canaveras, J.C., Cuezva, S., Rosas, A., Soler, V., Julià, R., Torres, T. De, Ortiz, J.E., Castro, J., Badal, E., Altuna, J. & Alonso, J. 2003. Sidron's Cave (Borines, Pilona, Asturias): initial results. Estudios Geologicos 59: 159–79.Google Scholar
Gamble, C., Davies, W., Pettitt, P. & Richards, M. 2004. Climate change and evolving human diversity in Europe during the last glacial. Philosophical Transactions of the Royal Society of London, Series B 359: 243–54.CrossRefGoogle ScholarPubMed
Gamble, C., Davies, W., Pettitt, P., Hazelwood, L. & Richards, M. 2005. The archaeological and genetic foundations of the European population during the late glacial: implications for 'Agricultural Thinking'. Cambridge Archaeological Journal 15: 193223.CrossRefGoogle Scholar
Giaccio, B., Hajdas, I., Peresani, M., Fedele, F.G. & Isaia, R. 2006. The Campanian Ignimbrite tephra and its relevance for the timing of the Middle to Upper Palaeolithic shift, in Conard, N.J. (ed.) When Neanderthals and modern humans met: 343–75. Tübingen: Kerns.Google Scholar
Gilmour, M., Currant, A., Jacobi, R.M. & Stringer, C.B. 2007. Recent TIMS dating results from British Late Pleistocene vertebrate faunal localities: context and interpretation. Journal of Quaternary Science 22: 793800.CrossRefGoogle Scholar
Hahn, J. 1988. Die Geißenklösterle-Höhle im Achtal bei Blaubeuren I. Fundhorizontbildung und Besiedlung im Mittelpalëolithikum und im Aurignacien. Stuttgart: Konrad Theiss.Google Scholar
Higham, T.F.G., Jacobi, R.M. & Ramsey, C.B. 2006a. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48(2): 179–95.CrossRefGoogle Scholar
Higham, T., Ramsey, C.B., Karavanić, I., Smith, F.H. & Trinkaus, E. 2006b. Revised direct radiocarbon dating of the Vindija G1 Upper Paleolithic Neandertals. Proceedings of the National Academy of Sciences of the United States of America 103: 553–7.CrossRefGoogle ScholarPubMed
Higham, T.F.G., Barton, H., Turney, C.M.T., Barker, G., Bronk, C. RAMSEY & Brock, F. 2008. Radiocarbon dating of charcoal from tropical sequences: results from the Niah Great Cave, Sarawak and their broader implications. Journal of Quaternary Science 24: 189–97.CrossRefGoogle Scholar
Higham, T.F.G., Brock, F., Peresani, M., Broglio, A., Wood, R. & Douka, K. 2009. Problems with radiocarbon dating the Middle to Upper Palaeolithic transition in Italy. Quaternary Science Reviews 28: 1257–67.CrossRefGoogle Scholar
Hoffmann, D.L., Beck, J.W., Richards, D.A., Smart, P.L., Singarayer, J.S., Ketchmark, T. & Hawkesworth, C.J. 2010. Towards radiocarbon calibration beyond 28 ka using speleothems from the Bahamas. Earth and Planetary Science Letters 289: 110.CrossRefGoogle Scholar
Jacobi, R.M., Higham, T.F.G. & Ramsey, C. Bronk. 2006. AMS radiocarbon dating of Middle and Upper Palaeolithic bone in the British Isles: improved reliability using ultrafiltration. Journal of Quaternary Science 21: 557–73.CrossRefGoogle Scholar
Jöris, O., Fernández, E. Álvarez & Weninger, B. 2003. Radiocarbon evidence of the Middle to Upper Palaeolithic transition in south-western Europe. Trabajos de Prehistoria 60(2): 1538.CrossRefGoogle Scholar
Krause, J., Orlando, L., Serre, D., Viola, B., Prüfer, K., Richards, M.P., Hublin, J.-J., Hänni, C., Derevianko, A.P. & Pääbo, S. 2007. Neanderthals in central Asia and Siberia. Nature 449(7164): 902904.CrossRefGoogle ScholarPubMed
Kuzmin, Y.V. & Keates, S.G. 2005. Dates are not just data: Paleolithic settlement patterns in Siberia derived from radiocarbon records. American Antiquity 70: 773–89.CrossRefGoogle Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291): 241–2.CrossRefGoogle ScholarPubMed
Mellars, P. 1989. Major issues in the emergence of modern humans. Current Anthropology 30: 349–85.CrossRefGoogle Scholar
Mellars, P. 1999. The Neanderthal problem continued. Current Anthropology 40: 341–64.CrossRefGoogle Scholar
Peresani, M., Cremaschi, M., Ferraro, F., Falguères, C., Bahain, J., Gruppioni, G., Sibilia, E., Quarta, G., Calcagnile, L. & DOLO, J.-M. 2008. Age of the final Middle Palaeolithic and Uluzzian levels at Fumane Cave, northern Italy, using 14C, ESR, 234U/230Th and thermoluminescence methods. Journal of Archaeological Science 35: 2986–96.CrossRefGoogle Scholar
Pettitt, P.B. & Pike, A.W.G. 2001. Blind in a cloud of data: problems with the chronology of Neanderthal extinction and anatomically modern human expansion. Antiquity 75: 415–20.CrossRefGoogle Scholar
Pettitt, P.B., Davies, W., Gamble, C.S. & Richards, M.P. 2003. Palaeolithic radiocarbon chronology: quantifying our confidence beyond two half-lives. Journal of Archaeological Science 30: 1685–93.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C. Bronk, Buck, C.E., Burr, G., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Mccormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., Plicht, J. Van Der & Weyhenmeyer, C.E. 2009. Intcal09 and Marine09 radiocarbon age calibration curves, 0–50 000 years cal BP. Radiocarbon 51: 1111–50.CrossRefGoogle Scholar
Santamaría, D., Fortea, J., Rasilla, M. De La, Martínez, L., Martínez, E., Cañaveras, J.C., Sánchez-Moral, S., Rosas, A., Estalrrich, A., García-Tabernero, A. & Lalueza-Fox, C. 2010. The technological and typological behaviour of a Neanderthal group from El Sidrón Cave (Asturias, Spain). Oxford Journal of Archaeology 29: 119–48.CrossRefGoogle Scholar
Santos, G.M., Bird, M.I., Fifield, L.K., Parenti, F., Guidon, N. & Hausladen, P.A. 2003. The controversial antiquity of the peopling of the Americas: a review of the chronology of the lowest occupation layer in the Pedra Furada rockshelter, Piauí, Brazil. Quaternary Science Reviews 22: 23032310.CrossRefGoogle Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Rasmussen, S.O. & Röthlisberger, R. 2006. The Greenland ice core chronology 2005, 15–42 ka, Part 2: comparison to other records. Quaternary Science Reviews 25: 3258–67.CrossRefGoogle Scholar
Teyssandier, N., Bolus, M. & Conard, N.J. 2006. The Early Aurignacian in central Europe and its place in a European perspective, in Bar-Yosef, O. & Zilhão, J. (ed.) Towards a definition of the Aurignacian: 241–56. Lisbon: Trabalhos de Arqueologia.Google Scholar
Turney, C.S.M., Bird, M.I., Fifield, L.K., Roberts, R.G., Smith, M.A., Dortch, C.E., Grün, R., Lawson, E., Ayliffe, L.K., Miller, G.H., Dortch, J. & Cresswell, R.G. 2001. Early human occupation at Devil's Lair, south-western Australia 50 000 years ago. Quaternary Research 55: 313.CrossRefGoogle Scholar
Van Andel, T. H., Davies, W., Weninger, B. & Öris, O. J. 2003. Archaeological dates as proxies for the spatial and temporal human presence in Europe: a discourse on the method, in Andel, T. Van & Davies, W. (ed.) Neanderthals and modern humans in the European landscape during the Last Glaciation: 21–9. Cambridge: McDonald Institute for Archaeological Research.Google Scholar
Van Klinken, G. J. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26: 687–95CrossRefGoogle Scholar
Voelker, A.H.L., Grootes, P.M., Nadeau, M.-J. & Sarnthein, M. 2000. Radiocarbon levels in the Iceland Sea from 25–53 kyr and their link to the earth's magnetic field intensity. Radiocarbon 42: 437–52.CrossRefGoogle Scholar
Wood, R.E., Ramsey, C. Bronk & Higham, T.F.G. 2010. Refining the ultrafiltration bone pre-treatment background for radiocarbon dating at ORAU. Radiocarbon 52: 600611.CrossRefGoogle Scholar
Zilhão, J. 2006. Neandertals and moderns mixed, and it matters. Evolutionary Anthropology 15: 183–95.CrossRefGoogle Scholar
Zilhão, J. & D'errico, F. 1999. The chronology and taphonomy of the earliest Aurignacian and its implications for the understanding of Neandertal extinction. Journal of World Prehistory 13: 168.CrossRefGoogle Scholar