Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T06:15:21.043Z Has data issue: false hasContentIssue false

Vertical zonation of benthic invertebrates in the intertidal zone of Antarctica (Admiralty Bay, King George Island)

Published online by Cambridge University Press:  27 October 2021

Maciej Chelchowski*
Affiliation:
Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Piotr Balazy
Affiliation:
Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Katarzyna Grzelak
Affiliation:
Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Lukasz Grzelak
Affiliation:
Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Monika Kędra
Affiliation:
Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Joanna Legezynska
Affiliation:
Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
Piotr Kuklinski
Affiliation:
Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland

Abstract

The Antarctic Peninsula is undergoing rapid change due to global warming, including air and water temperature increases. Fauna inhabiting the intertidal zone are particularly exposed to warming impacts, as they are subjected to high variations in both terrestrial and marine environmental settings. This study aimed to assess intertidal macrofaunal and meiofaunal biodiversity, tidal height-related assemblage structural patterns and their responses to variability in environmental parameters on King George Island. A total of 39 macrofaunal taxa were identified, with polychaetes and amphipods being the most diverse groups and gastropods, amphipods and bivalves being the most abundant. In the case of meiofauna, 16 taxa were found, mainly nematodes, copepod nauplii and harpacticoids. There was a significant decrease in the number of species, abundance and biomass for both macrofauna and meiofauna with increasing tidal height. Our investigation documented highly diverse and abundant fauna in the Antarctic intertidal zone. With its thriving life, it could serve as a perfect model system for detecting climate change impacts on local biodiversity. Therefore, we propose the Antarctic intertidal zone as a suitable habitat for monitoring these changes.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, T., Greenwood, B. & Hughes, M. 2013. Sediment transport on dissipative, intermediate and reflective beaches. Earth-Science Reviews, 124, 10.1016/j.earscirev.2013.05.002.10.1016/j.earscirev.2013.05.002CrossRefGoogle Scholar
Aghmich, A., Taboada, S., Toll, L. & Ballesteros, M. 2016. First assessment of the rocky intertidal communities of Fildes Bay, King George Island (South Shetland Islands, Antarctica). Polar Biology, 39, 10.1007/s00300-015-1814-9.10.1007/s00300-015-1814-9CrossRefGoogle Scholar
Arnaud, P.M., Jazdzewski, K., Presler, P. & Sicinski, J. 1986. Preliminary survey of benthic invertebrates collected by Polish Antarctic Expeditions in Admiralty Bay (King George Island, South Shetland Islands, Antarctica). Polish Polar Research, 7, 724.Google Scholar
Barnes, D. 1999. The influence of ice on polar nearshore benthos. Journal of the Marine Biological Association of the United Kingdom, 79, 10.1017/S0025315498000514.CrossRefGoogle Scholar
Barnes, D.K. & Conlan, K.E. 2007. Disturbance, colonization and development of Antarctic benthic communities. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362, 10.1098/rstb.2006.1951.10.1098/rstb.2006.1951CrossRefGoogle ScholarPubMed
Bertness, M.D., Crain, C.M., Silliman, B.R., Bazterrica, M.C., Reyna, M.V., Hildago, F. & Farina, J.K. 2006. The community structure of western Atlantic Patagonian rocky shores. Ecological Monographs, 76, 10.1890/0012-9615(2006)076[0439:TCSOWA]2.0.CO;2.10.1890/0012-9615(2006)076[0439:TCSOWA]2.0.CO;2CrossRefGoogle Scholar
Bick, A. & Arlt, G. 2013. Description of intertidal macro- and meiobenthic assemblages in Maxwell Bay, King George Island, South Shetland Islands, Southern Ocean. Polar Biology, 36, 10.1007/s00300-013-1293-9.CrossRefGoogle Scholar
Blankley, W.O. & Grindley, J.R. 1985. The intertidal and shallow subtidal food web at Marion Island. In Siegfried, W.R., Condy, P.R. & Laws, R.M., eds. Antarctic nutrient cycles and food webs. Berlin: Springer, 630636.10.1007/978-3-642-82275-9_86CrossRefGoogle Scholar
Bouvy, M. & Soyer, J. 1989. Benthic seasonality in an intertidal mud flat at Kerguelen Islands (Austral Ocean). The relationships between meiofaunal abundance and their potential microbial food. Polar Biology, 10, 10.1007/BF00238286.Google Scholar
Castillo, S., De Aranzamendi, M.C., Martínez, J.J. & Sahade, R. 2019. Phenotypic selection by kelp gulls against pear-shaped shells of the Antarctic limpet Nacella concinna. Biological Journal of the Linnean Society, 128, 10.1093/biolinnean/blz128.10.1093/biolinnean/blz128CrossRefGoogle Scholar
Catewicz, Z. & Kowalik, Z. 1983. Harmonic analysis of tides in Admiralty Bay. Oceanologia, 15, 97109.Google Scholar
Chappuis, E., Terradas, M., Cefalì, M.E., Mariani, S. & Ballesteros, E. 2014. Vertical zonation is the main distribution pattern of littoral assemblages on rocky shores at a regional scale. Estuarine, Coastal and Shelf Science, 147, 10.1016/j.ecss.2014.05.031.10.1016/j.ecss.2014.05.031CrossRefGoogle Scholar
Clark, G.F., Raymond, B., Riddle, M.J., Stark, J.S. & Johnston, E.L. 2015. Vulnerability of Antarctic shallow invertebrate-dominated ecosystems. Austral Ecology, 40, 10.1111/aec.12237.CrossRefGoogle Scholar
Clarke, K.R. & Warwick, R.M. 1998. A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology, 35, 10.1046/j.1365-2664.1998.3540523.x.CrossRefGoogle Scholar
Clarke, K.R. & Warwick, R.M. 2001. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: PRIMER-E.Google Scholar
Cook, A.J., Holland, P.R., Meredith, M.P., Murray, T., Luckman, A. & Vaughan, D.G. 2016. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353, 10.1126/science.aae0017.10.1126/science.aae0017CrossRefGoogle ScholarPubMed
Davenport, J. & Macalister, H. 1996. Environmental conditions and physiological tolerances of intertidal fauna in relation to shore zonation at Husvik, South Georgia. Journal of the Marine Biological Association of the United Kingdom, 76, 10.1017/S0025315400040923.10.1017/S0025315400040923CrossRefGoogle Scholar
De Skowronski, R.S.P. & Corbisier, T.N. 2002. Meiofauna distribution in Martel Inlet, King George Island (Antarctica): sediment features versus food availability. Polar Biology, 25, 10.1007/s003000100320.10.1007/s003000100320CrossRefGoogle Scholar
Delgado, J.D., Riera, R., Monterroso, O. & Núnez, J. 2009. Distribution and abundance of meiofauna in intertidal sand substrata around Iceland. Aquatic Ecology, 43, 10.1007/s10452-008-9200-0.10.1007/s10452-008-9200-0CrossRefGoogle Scholar
Favero, M., Silva, P. & Ferreyra, G. 1997. Trophic relationships between the kelp gull and the Antarctic limpet at King George Island (South Shetland Islands, Antarctica) during the breeding season. Polar Biology, 17, 10.1007/s003000050137.CrossRefGoogle Scholar
Gheskiere, T., Vincx, M., Weslawski, J.M., Scapini, F. & Degraer, S. 2005. Meiofauna as descriptor of tourism-induced changes at sandy beaches. Marine Environmental Research, 60, 10.1016/j.marenvres.2004.10.006.CrossRefGoogle ScholarPubMed
Griffiths, H.J. & Waller, C.L. 2016. The first comprehensive description of the biodiversity and biogeography of Antarctic and Sub-Antarctic intertidal communities. Journal of Biogeography, 43, 10.1111/jbi.12708.CrossRefGoogle Scholar
Gutt, J. 2001. On the direct impact of ice on marine benthic communities, a review. Polar Biology, 24, 10.1007/s003000100262.10.1007/s003000100262CrossRefGoogle Scholar
Hansom, J.D. 2005. Boulder pavements. In Schwartz, M.L., ed. Encyclopedia of coastal science. Series: encyclopedia of earth sciences. Dordrecht: Springer, 208210.Google Scholar
Heaven, C.S. & Scrosati, R.A. 2008. Benthic community composition across gradients of intertidal elevation, wave exposure, and ice scour in Atlantic Canada. Marine Ecology Progress Series, 369, 10.3354/meps07655.10.3354/meps07655CrossRefGoogle Scholar
Jazdzewski, K., Broyer, C., Pudlarz, M. & Zielinski, D. 2001. Seasonal fluctuations of vagile benthos in the uppermost sublittoral of a maritime Antarctic fjord. Polar Biology, 24, 10.1007/s003000100299.10.1007/s003000100299CrossRefGoogle Scholar
Kennicutt, M.C., Chown, S.L., Cassano, J.J., Liggett, D., Massom, R., Peck, L.S., et al. 2014. Polar research: six priorities for Antarctic science. Nature News, 512, 10.1038/512023a.10.1038/512023aCrossRefGoogle ScholarPubMed
Kotwicki, L., De Troch, M., Urban-Malinga, B., Gheskiere, T. & Weslawski, J.M. 2005a. Horizontal and vertical distribution of meiofauna on sandy beaches of the North Sea (The Netherlands, Belgium, France). Helgoland Marine Research, 59, 10.1007/s10152-005-0001-8.CrossRefGoogle Scholar
Kotwicki, L., Szymelfenig, M., De Troch, M., Urban-Malinga, B. & Węsławski, J.M. 2005b. Latitudinal biodiversity patterns of meiofauna from sandy littoral beaches. Biodiversity and Conservation, 14, /10.1007/10531-004-6272-6.CrossRefGoogle Scholar
Kuklinski, P. & Balazy, P. 2014. Scale of temperature variability in the maritime Antarctic intertidal zone. Journal of Sea Research, 85, 10.1016/j.seares.2013.09.002.CrossRefGoogle Scholar
Kuklinski, P. & Barnes, D.K. 2008. Structure of intertidal and subtidal assemblages in Arctic vs temperate boulder shores. Polish Polar Research, 29, 203218.Google Scholar
Lee, H.J. & Van de Velde, J. 1999. Biodiversity of Antarctic nematodes. In Arntz, W.E. & Gutt, J., eds. Reports on polar research, the Expedition ANTARKTIS ZX/3 (EASIZ II). Bremerhaven: Boehl & Oppermann, 175177.Google Scholar
Liu, X., Wang, L., Li, S., Huo, Y., He, P. & Zhang, Z. 2015. Quantitative distribution and functional groups of intertidal macrofaunal assemblages in Fildes Peninsula, King George Island, South Shetland Islands, Southern Ocean. Marine Pollution Bulletin, 99, 10.1016/j.marpolbul.2015.07.047.10.1016/j.marpolbul.2015.07.047CrossRefGoogle Scholar
Marcías, M.L., Deregibus, D., Saravia, L.A., Campana, G.L. & Quartino, M.L. 2017. Life between tides: spatial and temporal variations of an intertidal macroalgal community at Potter Peninsula, South Shetland Islands, Antarctica. Estuarine, Coastal and Shelf Science, 187, 10.1016/j.ecss.2016.12.023.CrossRefGoogle Scholar
Martín, A., Miloslavich, P., Díaz, Y., Ortega, I., Klein, E., Troncoso, J., et al. 2016. Intertidal benthic communities associated with the macroalgae Iridaea cordata and Adenocystis utricularis in King George Island, Antarctica. Polar Biology, 39, 10.1007/s00300-015-1773-1.CrossRefGoogle Scholar
McLachlan, A., Erasmus, T. & Furstenberg, J.P. 1977. Migrations of sandy beach meiofauna. African Zoology, 12, 257277.CrossRefGoogle Scholar
Menge, B.A. & Branch, G.M. 2001. Rocky intertidal communities. In Bertness, M.D., Gaines, S.D. & Hay, M.E., eds. Marine community ecology. Sunderland: Sinauer Associates, 221251.Google Scholar
Menge, B.A., Daley, B.A., Lubchenco, J., Sanford, E., Dahlhoff, E., Halpin, P.M., et al. 1999. Top-down and bottom-up regulation of New Zealand rocky intertidal communities. Ecological Monographs, 69, 10.1890/0012-9615(1999)069[0297:TDABUR]2.0.CO;2.CrossRefGoogle Scholar
Peck, L.S., Convey, P. & Barnes, D.K. 2006. Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews, 81, 10.1017/S1464793105006871.Google ScholarPubMed
Peck, L.S., Webb, K.E. & Bailey, D.M. 2004. Extreme sensitivity of biological function to temperature in Antarctic marine species. Functional Ecology, 18, 10.1111/j.0269-8463.2004.00903.x.10.1111/j.0269-8463.2004.00903.xCrossRefGoogle Scholar
Rakusa-Suszczewski, S. 1995. The hydrography of Admiralty Bay and its inlets, coves and lagoons (King George Island, Antarctica). Polish Polar Research, 16, 6170.Google Scholar
Reid, D.G. 1989. The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Philosophical Transactions of the Royal Society of London, B324, 10.1098/rstb.1989.0040.Google Scholar
Schlacher, T.A. & Thompson, L. 2013. Spatial structure on ocean-exposed sandy beaches: faunal zonation metrics and their variability. Marine Ecology Progress Series, 478, 10.3354/meps10205.CrossRefGoogle Scholar
Siciński, J., Jazdzewski, K., de Broyer, C., Presler, P., Ligowski, R., Nonato, E.F., et al. 2011. Admiralty Bay benthos diversity - a census of a complex polar ecosystem. Deep-Sea Research II, 58, 10.1016/j.dsr2.2010.09.005.Google Scholar
Somero, G.N. 2002. Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integrative and Comparative Biology, 42, 10.1093/icb/42.4.780.10.1093/icb/42.4.780CrossRefGoogle Scholar
Steyaert, M., Vanaverbeke, J., Vanreusel, A., Barranguet, C., Lucas, C. & Vincx, M. 2003. The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuarine, Coastal and Shelf Science, 58, 10.1016/S0272-7714(03)00086-6.10.1016/S0272-7714(03)00086-6CrossRefGoogle Scholar
Suda, C.N.K., Vani, G.S., de Oliveira, M.F., Rodrigues, E., Rodrigues, E. & Lavrado, H.P. 2015. The biology and ecology of the Antarctic limpet Nacella concinna. Polar Biology, 38, 10.1007/s00300-015-1789-6.10.1007/s00300-015-1789-6CrossRefGoogle Scholar
Urban-Malinga, B., Wiktor, J., Jabłońska, A. & Moens, T. 2005. Intertidal meiofauna of a high-latitude glacial Arctic fjord (Kongsfjorden, Svalbard) with emphasis on the structure of free-living nematode communities. Polar Biology, 28, 10.1007/s00300-005-0022-4.CrossRefGoogle Scholar
Valdivia, N., Scrosati, R.A., Molis, M. & Knox, A.S. 2011. Variation in community structure across vertical intertidal stress gradients: how does it compare with horizontal variation at different scales? PLoS ONE, 6, 10.1371/journal.pone.0024062.10.1371/journal.pone.0024062CrossRefGoogle ScholarPubMed
Vanhove, S., Beghyn, M., Van Gansbeke, D., Bullough, L.W. & Vincx, M. 2000. A seasonally varying biotope at Signy Island, Antarctic: implications for meiofaunal structure. Marine Ecology Progress Series, 202, 10.3354/meps202013.CrossRefGoogle Scholar
Veit-Köhler, G., Durst, S., Schuckenbrock, J., Hauquier, F., Durán Suja, L., Dorschel, B., et al. 2018. Oceanographic and topographic conditions structure benthic meiofauna communities in the Weddell Sea, Bransfield Strait and Drake Passage (Antarctic). Progress in Oceanography, 162, 10.1016/j.pocean.2018.03.005.CrossRefGoogle Scholar
Waller, C.L. 2008. Variability in intertidal communities along a latitudinal gradient in the Southern Ocean. Polar Biology, 31, 10.1007/s00300-008-0419-y.CrossRefGoogle Scholar
Waller, C.L. 2013. Zonation in a cryptic Antarctic intertidal macrofaunal community. Antarctic Science, 25, 10.1017/S0954102012000867.10.1017/S0954102012000867CrossRefGoogle Scholar
Waller, C.L., Barnes, D.K.A. & Convey, P. 2006a. Ecological contrasts across an Antarctic land-sea interface. Austral Ecology, 31, 10.1111/j.1442-9993.2006.01618.x.10.1111/j.1442-9993.2006.01618.xCrossRefGoogle Scholar
Waller, C.L., Worland, M.R., Convey, P. & Barnes, D.K.A. 2006b. Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biology, 29, 10.1007/s00300-006-0152-3.CrossRefGoogle Scholar
Zieliński, K. 1981. Benthic macroalgae of Admiralty Bay (King George Island, South Shetland Islands) and circulation of algal matter between the water and the shore. Polish Polar Research, 2, 7194.Google Scholar