Article contents
Upper ocean layer dynamics and response to atmospheric forcing in the Terra Nova Bay polynya, Antarctica
Published online by Cambridge University Press: 16 March 2010
Abstract
A one-year time series of Acoustic Doppler Current Profiler (ADCP) data was collected in Terra Nova Bay (TNB) polynya (Ross Sea, Antarctica) during 2000. Together with Automatic Weather Station (AWS) Eneide meteorological data and Special Sensor Microwave Imager (SSM/I) ice concentration data, ADCP data were analysed to investigate upper layer dynamics and variability due to atmospheric forcing. Empirical Orthogonal Function (EOF) analysis was performed to separate the surface variability caused by local forcing from the large-scale circulation component. In particular, the first mode represented the barotropic circulation while the second the stronger surface currents. The decrease in shelf water density from melting sea ice resulted in an off-shore density gradient producing a southern shift in the circulation. This result proved to be consistent with the in situ data acquired during February–April at 120 m depth. The observed variability of the surface currents was assessed with respect to the thermal wind equation and the steady Ekman model. Strong katabatic winds shifted the surface currents eastward with respect to the general north-eastern circulation. The wind stress acted as a relevant forcing for the surface large-scale circulation in TNB, but had negligible effects on the vertically integrated transport.
- Type
- Physical Science
- Information
- Copyright
- Copyright © Antarctic Science Ltd 2010
References
- 12
- Cited by