Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T20:52:47.589Z Has data issue: false hasContentIssue false

Statistical analyses and correlation between tropospheric temperature and humidity at Dome C, Antarctica

Published online by Cambridge University Press:  19 September 2013

P. Ricaud*
Affiliation:
Météo-France/CNRS, UMR 3589, 42 Avenue Gaspard Coriolis, 31057 Toulouse, France
F. Carminati
Affiliation:
Météo-France/CNRS, UMR 3589, 42 Avenue Gaspard Coriolis, 31057 Toulouse, France University of Maryland, College Park, Maryland, USA
Y. Courcoux
Affiliation:
Université Versailles Saint Quentin - Université Paris 6, CNRS UMR 8190, France
A. Pellegrini
Affiliation:
CNR, Piazzale Aldo Moro 7, Rome, Italy
J.-L. Attié
Affiliation:
Météo-France/CNRS, UMR 3589, 42 Avenue Gaspard Coriolis, 31057 Toulouse, France Université de Toulouse, Laboratoire d'Aérologie/CNRS, UMR 5560, 14 Avenue Edouard Belin, 31400 Toulouse, France
L. El Amraoui
Affiliation:
Météo-France/CNRS, UMR 3589, 42 Avenue Gaspard Coriolis, 31057 Toulouse, France
R. Abida
Affiliation:
Météo-France/CNRS, UMR 3589, 42 Avenue Gaspard Coriolis, 31057 Toulouse, France
C. Genthon
Affiliation:
LGGE/CNRS, 54 Rue Molière, 38402 Saint-Martin d'Hères, France
T. August
Affiliation:
EUMETSAT, Darmstadt, Germany
J. Warner
Affiliation:
University of Maryland, College Park, Maryland, USA

Abstract

The Dome C (Concordia) station in Antarctica (75°06′S, 123°21′E, 3233 m above mean sea level) has a unique opportunity to test the quality of remote-sensing measurements and meteorological analyses because it is situated well inside the Eastern Antarctic Plateau and is less affected by local phenomena. Measurements of tropospheric temperature and water vapour (H2O) together with the integrated water vapour (IWV) performed in 2010 are statistically analysed to assess their quality and to study the yearly correlation between temperature and H2O over the entire troposphere. The statistical tools include yearly evolution, seasonally-averaged mean and bias, standard deviation and linear Pearson correlation. The datasets are made of measurements from the ground-based microwave radiometer H2O Antarctica Microwave Stratospheric and Tropospheric Radiometer (HAMSTRAD), radiosonde, in situ sensors, the space-borne infrared sensors Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A platform and the Atmospheric InfraRed Sounder (AIRS) on the Aqua platform, and the analyses from the European Centre for Medium-Range Weather Forecast (ECMWF). Despite some obvious biases within all these datasets, our study shows that temperature and IWV are generally measured with high quality whilst H2O measurement quality is slightly worse. The AIRS and IASI measurements do not have the vertical resolution to correctly probe the lowermost troposphere, whilst HAMSTRAD loses sensitivity in the upper troposphere-lower stratosphere. Within the entire troposphere over the whole year, it is found that the time evolution of temperature and H2O is highly correlated (> 0.8). This suggests that, in addition to the variability of solar radiation producing an obvious diurnal cycle in the planetary boundary layer in summer and an obvious seasonal cycle over the year, the H2O and temperature intra-seasonal variabilities are affected by the same processes, e.g. related to the long-range transport of air masses.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arai, K. Liang, X.M. 2009. Sensitivity analysis for air temperature profile estimation methods around the tropopause using simulated Aqua/AIRS data. Advances in Space Research, 43, 845851.Google Scholar
Argentini, S., Pietroni, I., Mastrantonio, G., Viola, A. Zilitinchevich, S. 2007. Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica. EDP Sciences, 10.1051/esa:2007071.Google Scholar
Aristidi, E., Agabi, A., Vernin, J., Azouit, M., Martin, F., Ziad, A. Fossat, E. 2003. Antarctic site testing: first daytime seeing monitoring at Dome C. Astronomy and Astrophysics, 406, 1922.Google Scholar
Aumann, H., Gregorich, D. Broberg, S. 2006. AIRS observations of Dome C in Antarctica and comparison with automated weather stations. ITOVS meeting in Maratea, Italy, October 3–10, 2006. Pasadena, CA: Jet Propulsion Laboratory, NASA, 8 pp.Google Scholar
Aumann, H., Chahine, T., Gautier, C., Goldberg, D., Kalnay, E., McMillin, M., Revercomb, H., Rosenkranz, W., Smith, L., Staelin, H., Strow, L. Susskind, J. 2003. AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems. IEEE Transactions on Geoscience and Remote Sensing, 10.1109/TGRS.2002.808356.Google Scholar
Brasseur, G.P., Orlando, J.J. Tyndall, G.S. 1999. Atmospheric chemistry and global change. 2nd edition, Oxford: Oxford University Press, 654 pp.Google Scholar
Davis, D., Nowak, J.B., Chen, G., Buhr, M., Arimoto, R., Hogan, A., Eisele, F., Mauldin, F., Tanner, D., Shetter, R., Lefer, B. McMurry, P. 2001. Unexpected high levels of NO observed at South Pole. Geophysical Research Letters, 28, 36253628.CrossRefGoogle Scholar
De Gregori, S., De Petris, M., Decina, B., Lamagna, L., Pardo, J.R., Petkov, B., Tomasi, C. Valenzano, L. 2012. Millimetre and sub-millimetre atmospheric performance at Dome C combining radiosoundings and ATM synthetic spectra. Monthly Notices of the Royal Astronomical Society, 425, 222230.Google Scholar
Divakarla, M.G., Barnet, C.D., Goldberg, M.D., McMillin, L.M., Maddy, E., Wolf, W., Zhou, L. Liu, X. 2006. Validation of atmospheric infrared sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. Journal of Geophysical Research, 10.1029/2005JD006116.Google Scholar
EUMETSAT. 2012. IASI level 2 products guide. EUM/OPS-EPS/MAN/04/0033, http://oiswww.eumetsat.org/WEBOPS/eps-pg/IASI-L2/IASIL2-PG-0TOC.htm.Google Scholar
Genthon, C., Six, D., Favier, V., Lazzara, M. Keller, L. 2011. Atmospheric temperature measurement biases on the Antarctic plateau. Journal of Atmospheric and Oceanic Technology, 28, 15981605.Google Scholar
Genthon, C., Town, M.S., Six, D., Favier, V., Argentini, S. Pellegrini, A. 2010. Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica. Journal of Geophysical Research-Atmospheres, 10.1029/2009JD012741.CrossRefGoogle Scholar
Hagelin, S., Masciadri, E., Lascaux, F. Stoesz, J. 2008. Comparison of the atmosphere above the South Pole, Dome C and Dome A: first attempt. Monthly Notice of the Royal Astronomical Society, 387, 14991510.CrossRefGoogle Scholar
Herbin, H., Hurtmans, D., Clerbaux, C., Clarisse, L. Coheur, P.F. 2009. H2 16O and HDO measurements with IASI/MetOp. Atmospheric Chemistry and Physics, 9, 94339447.Google Scholar
Hines, K.M., Bromwich, D.H., Rasch, P.J. Iacono, M.J. 2004. Antarctic clouds and radiation within the NCAR climate models. Journal of Climate, 17, 11981212.Google Scholar
Jones, A.E., Weller, R., Anderson, P.S., Jacobi, H.W., Wolff, E.W., Schrems, O. Miller, H. 2001. Measurements of NOx emissions from the Antarctic snowpack. Geophysical Research Letters, 28, 14991502.Google Scholar
Lerner, J.A., Weisz, E. Kirchengast, G. 2002. Temperature and humidity retrieval from simulated infrared atmospheric sounding interferometer (IASI) measurements. Journal of Geophysical Research, 10.1029/2001JD900254.CrossRefGoogle Scholar
Maddy, E.S. Barnet, C.D. 2008. Vertical resolution estimates in version 5 of AIRS operational retrievals. IEEE Transactions on Geoscience and Remote Sensing, 46, 23752385.Google Scholar
Miloshevich, L.M., Vömel, H., Whiteman, D.N. Leblanc, T. 2009. Accuracy assessment and corrections of Vaisala RS92 radiosonde water vapour measurements. Journal of Geophysical Research, 10.1029/2008JD011565.Google Scholar
Miloshevich, L.M., Vömel, H., Whiteman, D.N., Lesht, B.M., Schmidlin, F.J. Russo, F. 2006. Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. Journal of Geophysical Research, 10.1029/2005JD006083.CrossRefGoogle Scholar
NASA (National Aeronautics and Space Administration). 2012. Guide documents for AIRS version 5 products. http://disc.sci.gsfc.nasa.gov/AIRS/documentation.Google Scholar
Pougatchev, N., August, T., Calbet, X., Hultberg, T., Oduleye, O., Schlussel, P., Stiller, B., St Germain, K. Bingham, G. 2009. IASI temperature and water vapor retrieval - error assessment and validation. Atmospheric Chemistry and Physics, 9, 64536458.Google Scholar
Ricaud, P., Gabard, B., Derrien, S., Attié, J.-L., Rose, T. Czekala, H. 2010b. Validation of tropospheric water vapor as measured by the 183-GHz HAMSTRAD radiometer over the Pyrennees Mountains, France. IEEE Transactions on Geoscience and Remote Sensing, 48, 21892203.Google Scholar
Ricaud, P., Gabard, B., Derrien, S., Chaboureau, J.-P., Rose, T., Mombauer, A. Czekala, H. 2010a. HAMSTRAD-Tropo, a 183-GHz radiometer dedicated to sound tropospheric water vapor over Concordia Station, Antarctica. IEEE Transactions on Geoscience and Remote Sensing, 48, 13651380.Google Scholar
Ricaud, P., Carminati, F., Attié, J.-L., Courcoux, Y., Rose, T., Genthon, C., Pellegrini, A., Tremblin, P. August, T. 2013. Quality assessment of the first measurements of tropospheric water vapor and temperature by the HAMSTRAD radiometer over Concordia Station, Antarctica. IEEE Transactions on Geoscience and Remote Sensing, 51, 32173239.Google Scholar
Ricaud, P., Genthon, C., Durand, P., Attié, J.-L., Carminati, F., Canut, G., Vanacker, J.-F., Moggio, L., Courcoux, Y., Pellegrini, A. Rose, T. 2012. Summer to winter diurnal variabilities of temperature and water vapor in the lowermost troposphere as observed by the HAMSTRAD radiometer over Dome C, Antarctica. Boundary-Layer Meteorology, 143, 227259.Google Scholar
Ricaud, P., Lefevre, F. Berthet, G., et al. 2005. Polar vortex evolution during the 2002 Antarctic major warming as observed by the Odin satellite. Journal of Geophysical Research, 10.1029/2004JD005018.Google Scholar
Rowe, P.M., Miloshevich, L.M., Turner, D.D. Walden, V.P. 2008. Dry bias in Vaisala RS90 radiosonde humidity profiles over Antarctica. Journal of Atmospheric and Oceanic Technology, 25, 15291541.Google Scholar
Schlüssel, P., Hultberg, T.H., Phillips, P.L., August, T. Calbet, X. 2005. The operational IASI level 2 processor. Advances in Space Research, 36, 982988.Google Scholar
Susskind, J., Blaisdell, J. Iredel, L. 2010. Improved determination of surface and atmospheric temperatures using only shortwave AIRS channels: the AIRS version-6 retrieval algorithm. IEEE Transactions on Geoscience and Remote Sensing, 10.1109/IGARSS.2010.5650538.Google Scholar
Tobin, D.C., Revercomb, H.E., Knuteson, R.O., Lesht, B.M., Strow, L.L., Hannon, S.E., Feltz, W.F., Moy, L.A., Fetzer, E.J. Cress, T.S. 2006. Atmospheric radiation measurement site atmospheric state best estimates for atmospheric infrared sounder temperature and water vapor retrieval validation. Journal of Geophysical Research, 10.1029/2005JD006103.Google Scholar
Tomasi, C., Petkov, B.H. Benedetti, E. 2012. Annual cycles of pressure, temperature, absolute humidity and precipitable water from the radiosoundings performed at Dome C, Antarctica, over the 2005–2009 period. Antarctic Science, 24, 637658.Google Scholar
Tomasi, C., Petkov, B., Benedetti, E., Valenziano, L. Vitale, V. 2011. Analysis of a 4 year radiosonde dataset at Dome C for characterizing temperature and moisture conditions of the Antarctic atmosphere. Journal of Geophysical Research, 10.1029/2011JD015803.Google Scholar
Tremblin, P., Minier, V., Schneider, N., Durand, G.Al., Ashley, M.C.B., Lawrence, J.S., Luong-van, D.M., Storey, J.W.V., Durand, G.An., Reinert, Y., Veyssiere, C., Walter, C., Ade, P., Calisse, P.G., Challita, Z., Fossat, E., Sabbatini, L., Pellegrini, A., Ricaud, P. Urban, J. 2011. Site testing for submillimetre astronomy at Dome C in Antarctica. Astronomy and Astrophysics, 10.1051/0004-6361/201117345.Google Scholar
Turner, J., Lachlan-Cope, T.A., Colwell, S., Marshall, G.J. Connolley, W.M. 2006. Significant warming of the Antarctic winter troposphere. Science, 311, 19141917.Google Scholar