Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T06:28:18.208Z Has data issue: false hasContentIssue false

Small-scale studies towards a rational use of bioaugmentation in an Antarctic hydrocarbon-contaminated soil

Published online by Cambridge University Press:  08 June 2010

Lucas Ruberto
Affiliation:
Instituto Antártico Argentino, Cerrito 1248 (C1010AAZ), Buenos Aires, Argentina Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos, Junín 956 (C1113AAD), Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina
Susana C. Vazquez
Affiliation:
Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos, Junín 956 (C1113AAD), Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Buenos Aires, Argentina
Romina L. Dias
Affiliation:
Consejo de Investigaciones Científicas (CIC), Calle 526 entre 10 y 11 (1900), La Plata, Buenos Aires, Argentina
Edgardo A. Hernández
Affiliation:
Instituto Antártico Argentino, Cerrito 1248 (C1010AAZ), Buenos Aires, Argentina Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos, Junín 956 (C1113AAD), Buenos Aires, Argentina
Silvia H. Coria
Affiliation:
Instituto Antártico Argentino, Cerrito 1248 (C1010AAZ), Buenos Aires, Argentina Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos, Junín 956 (C1113AAD), Buenos Aires, Argentina
Gustavo Levin
Affiliation:
Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos, Junín 956 (C1113AAD), Buenos Aires, Argentina
Alfredo Lo Balbo
Affiliation:
Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos, Junín 956 (C1113AAD), Buenos Aires, Argentina
Walter P. Mac Cormack*
Affiliation:
Instituto Antártico Argentino, Cerrito 1248 (C1010AAZ), Buenos Aires, Argentina Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos, Junín 956 (C1113AAD), Buenos Aires, Argentina
*
*Corresponding author: [email protected]

Abstract

Bioaugmentation is a controversial strategy. In this work, the effect of the inoculum size and the absence of natural microflora on the efficiency of hydrocarbon removal were studied. Two levels of inoculum (106 and 109 CFU g-1) were applied to soil microcosms containing sterile (S6 and S9) and non-sterile (NS6 and NS9) oil contaminated Antarctic soil. Community controls (CC) and biostimulated autochthonous microflora (BAM) were also included. Total heterotrophic aerobic (THAB) and hydrocarbon degrading (HDB) bacteria as well as total petroleum hydrocarbons (TPH) were analysed. At day 0, THAB and HDB counts (CFU g-1) showed no differences among CC, BAM and NS6 but significantly higher values were observed in NS9 and S9. At day 60, three different levels of HDB were observed. The lower level was represented by CC (106 CFU g-1), a second group (5 x 107 CFU g-1) was represented by BAM, NS6, NS9 and S6, and the third level was constituted by S9 (1 x 109 CFU g-1). TPH values at day 60 decreased significantly in all systems excluding the controls. NS6, NS9, S6 and S9 were not different from those corresponding to BAM. Results suggest that the bioaugmentation of a chronically diesel fuel-contaminated Antarctic soil is unlikely to be profitable or beneficial.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bamforth, S.M.Singleton, I. 2005. Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology and Biotechnology, 80, 723736.CrossRefGoogle Scholar
Bouchez, T., Patureau, D., Dabert, P., Wagner, M., Delgenes, J.P.Moletta, R. 2000a. Successful and unsuccessful bioaugmentation experiments monitored by fluorescent in situ hybridization. Water Science and Technology, 41, 6168.CrossRefGoogle Scholar
Bouchez, T., Patureau, D., Dabert, P., Juretschko, S., Dore, J., Delgenes, P., Moletta, R.Wagner, M. 2000b. Ecological study of a bioaugmentation failure. Environmental Microbiology, 2, 179190.CrossRefGoogle ScholarPubMed
Bray, R.H.Kurtz, L.T. 1945. Determination of total organic and available forms of phosphorus in soils. Soil Science, 59, 3945.CrossRefGoogle Scholar
Bremner, J.M.Mulvaney, C.S. 1982. Nitrogen total. In Page, A.L., Miller, R.H. & Keeney, D.R.,eds. Methods of soil analysis, Part 2. Chemical and microbiological properties. Agronomy Monograph no. 9, 2nd ed. American. Madison, WI: Society of Agronomy, 595624.Google Scholar
Coppotelli, B.M., Ibarrolaza, A., Del Panno, M.T.Morelli, I.S. 2008. Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community and biodegradation in phenanthrene-contaminated soil. Microbial Ecology, 55, 173183.CrossRefGoogle ScholarPubMed
El Fantroussi, S.Agathos, S. 2005. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Current Opinion in Microbiology, 8, 268275.CrossRefGoogle ScholarPubMed
Espeche, M.E., Mac Cormack, W.P.Fraile, E.R. 1994. Factors affecting growth of an n-hexadecane degrader Acinetobacter species isolated from a highly polluted urban river. International Biodeterioration and Biodegradation, 33, 187196.CrossRefGoogle Scholar
Gee, G.R.Bauder, J.W. 1986. Particle size analysis. In Klute, A., ed. Methods of soil analysis, Part 1: Physical and mineralogical methods, 2nd ed. Madison, WI: Society of Agronomy, 383409.Google Scholar
Gomes, N.C.M., Kosheleva, I.A., Abraham, W.R.Smalla, K. 2005. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiology Ecology, 54, 2133.CrossRefGoogle ScholarPubMed
Hosokawa, R., Nagai, M., Morikawa, M.Okuyama, H. 2009. Autochthonous bioaugmentation and its possible application to oil spills. World Journal of Microbiology and Biotechnology, 25, 15191528.CrossRefGoogle Scholar
Margesin, R.Schinner, F. 1997. Efficiency of indigenous and inoculated cold-adapted soil microorganism for biodegradation of diesel oil in Alpine soils. Applied and Environmental Microbiology, 63, 26602664.CrossRefGoogle ScholarPubMed
Mestre, M.C., Vázquez, S.C., Ruberto, L.Mac Cormack, W.P. 2007. Identificación de los componentes cultivables del consorcio bacteriano degradador de hidrocarburos “M10”. Proceedings of VI Jornadas Nacionales y III Latinoamericanas de Comunicaciones sobre Investigaciones Antárticas. Available at www.dna.gov.ar/ciencia/santar07/cd/pdf/cvre407.pdf, 5 pp.Google Scholar
Mohn, W.W.Stewart, G.R. 2000. Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils. Soil Biology and Biochemistry, 32, 11611172.CrossRefGoogle Scholar
Richter, M.von Wistinghausen, E. 1981. Unterscheidbarkeit von humusfraktione in boden bei Unterschiedlicher bewirtschaftung. Pflanzenernaehr Bodenk, 144, 395406.CrossRefGoogle Scholar
Ruberto, L., Dias, R., Lo Balbo, A., Vazquez, S.C., Hernandez, E.A.Mac Cormack, W.P. 2009. Influence of nutrients addition and bioaugmentation on the hydrocarbon biodegradation of a chronically contaminated Antarctic soil. Journal of Applied Microbiology, 106, 11011110.CrossRefGoogle ScholarPubMed
Ruberto, L.A.M., Vazquez, S.C., Curtosi, A., Mestre, M.C., Pelletier, E.Mac Cormack, W.P. 2006. Phenanthrene biodegradation in soils using an Antarctic bacterial consortium. Bioremediation Journal, 10, 191201.CrossRefGoogle Scholar
Seppelt, R.D. 1992. Assessment of environmental impact. In Wynn-Williams, D.D., ed. BIOTAS Manual of Methods for Antarctic Terrestrial and Freshwater Research. Cambridge: Scientific Committee on Antarctic Research, 4 pp.Google Scholar
Van Dyke, M.I.Prosser, J.I. 2000. Enhanced survival of Pseudomonas fluorescens in soil following establishment of inoculum in a sterile soil carrier. Soil Biology and Biochemistry, 32, 13771382.CrossRefGoogle Scholar
Van Overbeek, L.S., Eberi, L., Givskov, M., Molin, S.van Elsas, J.D. 1995. Survival of and induced stress resistance in carbon-starved Pseudomonas fluorescens cells residing in soil. Applied and Environmental Microbiology, 61, 42024208.CrossRefGoogle ScholarPubMed
Watanabe, K., Miyashita, M.Harayama, S. 2000. Starvation improves survival of bacteria introduced into activated sludge. Applied and Environmental Microbiology, 66, 39053910.CrossRefGoogle ScholarPubMed
Wynn-Williams, D.D. 1992. Counting bacterial colony-forming units in soil. In Wynn-Williams, D.D., ed. BIOTAS Manual of Methods for Antarctic Terrestrial and Freshwater Research. Cambridge: Scientific Committee on Antarctic Research, 3 pp.Google Scholar