Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T21:19:09.475Z Has data issue: false hasContentIssue false

Salt tolerance traits in Deschampsia antarctica Desv.

Published online by Cambridge University Press:  08 August 2016

Daisy Tapia-Valdebenito
Affiliation:
Laboratorio de Fisiología y Biología Molecular Vegetal, Facultad de Ciencias Agropecuarias y Forestales & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Casilla 54-D, Temuco, Chile
León A. Bravo Ramirez
Affiliation:
Laboratorio de Fisiología y Biología Molecular Vegetal, Facultad de Ciencias Agropecuarias y Forestales & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Casilla 54-D, Temuco, Chile
Patricio Arce–Johnson
Affiliation:
Departamento de Genética Molecular y Microbiología. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Alameda 340, Santiago, Chile
Ana Gutiérrez-Moraga*
Affiliation:
Laboratorio de Fisiología y Biología Molecular Vegetal, Facultad de Ciencias Agropecuarias y Forestales & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Casilla 54-D, Temuco, Chile Dirección de Investigación y Postgrado, Universidad Autónoma de Chile, Pedro de Valdivia 425, Providencia, Santiago, Chile
*
*Corresponding author: [email protected]

Abstract

Deschampsia antarctica Desv. (Poaceae) grows in coastal habitats in the Maritime Antarctic where it is often exposed to sea spray. Salt crystals have been observed on the surface of leaves in plants treated with high NaCl. We investigated if D. antarctica is a salt tolerant species that allows sodium ions to diffuse into the root where a salt overly sensitive (SOS) system extrudes Na+ from root cells and facilitates its movement through the xylem up to the leaves. Leaf epidermis, physiological parameters and sodium transporters in D. antarctica plants exposed to NaCl were studied over 21 days. Epidermal scanning electron microscopy showed trichome induction in the leaves of salt treated plants. In addition, salt treated plants showed increased sodium and proline levels with a concomitant increased expression of SOS genes (1 and 3). These results indicate that Na+ is taken up by the roots of D. antarctica and transported to the leaves. The sodium flux may be controlled by SOS1 activity. Up-regulation of the SOS1 gene may be involved in the increased sodium levels observed in the leaves of salt treated plants. Trichomes may also be involved in sodium exudation through the leaves under saline conditions.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, P., Nelson, D.E., Yamada, S., Chmara, W., Jensen, R.G., Bohnert, H.J. & Griffiths, H. 1998. Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytologist, 138, 171190.Google Scholar
Ahmad, P., Azooz, M.M. & Prasad, M.N.V. 2013. Ecophysiology and responses of plants under salt stress. New York, NY: Springer, 528 pp.Google Scholar
Alberdi, M., Bravo, L.A., Gutiérrez, A., Gidekel, M. & Corcuera, L.J. 2002. Ecophysiology of Antarctic vascular plants. Physiologia Plantarum, 115, 479486.Google Scholar
Bates, L.S., Waldren, R.P. & Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205207.Google Scholar
Beyer, L., Bölter, M. & Seppelt, R.D. 2000. Nutrient and thermal regime, microbial biomass, and vegetation of Antarctic soils in the Windmill Islands, East Antarctica (Wilkes Land). Arctic Antarctic and Alpine Research, 32, 3039.Google Scholar
Bravo, L.A. & Griffith, M. 2005. Characterization of antifreeze activity in Antarctic plants. Journal of Experimental Botany, 56, 11891196.Google Scholar
Bravo, L.A., Ulloa, N., Zuñiga, G.E., Casanova, A., Corcuera, L.J. & Alberdi, M. 2001. Cold resistance in Antarctic angiosperms. Physiologia Plantarum, 111, 5565.Google Scholar
Cuba, M., Gutiérrez-Moraga, A., Butendieck, B. & Gidekel, M. 2005. Micropropagation of Deschampsia antarctica – a frost-resistant Antarctic plant. Antarctic Science, 17, 6970.Google Scholar
Dinamarca, J., Sandoval-Alvarez, A., Gidekel, M. & Gutiérrez-Moraga, A. 2013. Differentially expressed genes induced by cold and UV-B in Deschampsia antarctica Desv. Polar Biology, 36, 409418.CrossRefGoogle Scholar
Finot, V., Baez, C. & Matthei, O. 2006. Micromorfología de la epidermis de la lemma de Trisetum y géneros afines (Poaceae, Pooideae). Darwiniana, 44, 3257.Google Scholar
Gidekel, M., Destefano-Beltran, L., Garcia, P., Mujica, L., Leal, P., Cuba, M., Fuentes, L., Bravo, L.A., Corcuera, L.J., Alberdi, M., Concha, I. & Gutiérrez, A. 2003. Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica Desv. Extremophiles, 7, 459469.Google Scholar
Gielwanowska, I., Szczuka, E., Bednara, J. & Gorecki, R. 2005. Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Annals of Botany, 96, 11091119.Google Scholar
Gonzáles, W.L., Negritto, M.A., Suárez, L.H. & Gianoli, E. 2008. Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecologica, 33, 128132.Google Scholar
Hasegawa, P.M., Bressan, R.A., Zhu, J.K. & Bohnert, H.J. 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463499.Google Scholar
Hauser, F. & Horie, T. 2010. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell and Environment, 33, 552565.Google Scholar
Jannesar, M., Razavi, K. & Saboora, A. 2014. Effects of salinity on expression of the salt overly sensitive genes in Aeluropus lagopoides . Australian Journal of Crop Science, 8, 18.Google Scholar
Lee, J., Lee, H., Noh, E.K., Park, M., Park, H., Kim, J.H., Kim, I.C. & Yim, J.H. 2014. Expression analysis of transcripts responsive to osmotic stress in Deschampsia antarctica Desv. Genes & Genomics, 36, 283291.Google Scholar
Liu, J.P., Ishitani, M., Halfter, U., Kim, C.S. & Zhu, J.K. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 97, 37303734.Google Scholar
Mattioni, C., Lacerenza, N.G., Troccoli, A., De Leonardis, A.M. & Di Fonzo, N. 1997. Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiologia Plantarum, 101, 787792.Google Scholar
Munns, R. & Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651681.Google Scholar
Oh, D.H., Leidi, E., Zhang, Q., Hwamg, S.W., Li, Y.Z., Quintero, F.J., Jiang, X.Y., D’Urzo, M.P., Lee, S.Y., Zhao, Y.X., Bahk, J.D., Bressan, R.A., Yun, D.J., Pardo, J.M. & Bohnert, H.J. 2009. Loss of halophytism by interference with SOS1 expression. Plant Physiology, 151, 210222.CrossRefGoogle ScholarPubMed
Olave-Concha, N., Bravo, L.A., Ruiz-Lara, S. & Corcuera, L.J. 2005. Differential accumulation of dehydrin-like proteins by abiotic stresses in Deschampsia antarctica Desv. Polar Biology, 28, 506513.Google Scholar
Pérez-Torres, E., Garcia, A., Dinamarca, J., Alberdi, M., Gutiérrez, A., Gidekel, M., Ivanov, A.G., Hüner, N.P.A., Corcuera, L.J. & Bravo, L.A. 2004. The role photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica . Functional Plant Biology, 31, 731741.Google Scholar
Quan, R.D., Lin, H.X., Mendoza, I., Zhang, Y.G., Cao, W.H., Yang, Y.Q., Shang, M., Chen, S.Y., Pardo, J.M. & Guo, Y. 2007. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 19, 14151431.Google Scholar
Quarrie, S.A. & Jones, H.G. 1977. Effects of abscisic acid and water stress on development and morphology of wheat. Journal of Experimental Botany, 28, 192203.Google Scholar
Romero, M., Casanova, A., Iturra, G., Reyes, A., Montenegro, G. & Alberdi, M. 1999. Leaf anatomy of Deschampsia antarctica (Poaceae) from the Maritime Antarctic and its plastic response to changes in the growth conditions. Revista Chilena de Historia Natural, 72, 411425.Google Scholar
Ruhland, C.T. & Krna, M.A. 2010. Effects of salinity and temperature on Deschampsia antarctica . Polar Biology, 33, 10071012.Google Scholar
Shabala, S. & Mackay, A. 2011. Ion transport in halophytes. Plant Responses to Drought and Salinity Stress: Developments in a Post-Genomic Era, 57, 151199.Google Scholar
Shi, H.Z., Ishitani, M., Kim, C.S. & Zhu, J.K. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America, 97, 68966901.Google Scholar
Shi, H.Z., Lee, B.H., Wu, S.J. & Zhu, J.K. 2003. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana . Nature Biotechnology, 21, 8185.Google Scholar
Shi, H.Z., Quintero, F.J., Pardo, J.M. & Zhu, J.K. 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell, 14, 465477.Google Scholar
Somaru, R., Naidoo, Y. & Naidoo, G. 2002. Morphology and ultrastructure of the leaf salt glands of Odyssea paucinervis (Stapf) (Poaceae). Flora, 197, 6775.Google Scholar
Tester, M. & Davenport, R. 2003. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503527.Google Scholar
Van Kooten, O.V. & Snel, J.F.H. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25, 147150.Google Scholar
Yang, Q., Chen, Z.Z., Zhou, X.F., Yin, H.B., Li, X., Xin, X.F., Hong, X.H., Zhu, J.K. & Gong, Z.Z. 2009. Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic. Arabidopsis. Molecular Plant, 2, 2231.Google Scholar
Zhao, Y., Wang, T., Zhang, W.S. & Li, X. 2010. SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis . New Phytologist, 189, 11221134.Google Scholar
Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247273.Google Scholar
Zhu, J.K., Liu, J.P. & Xiong, L.M. 1998. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell, 10, 11811191.Google Scholar
Supplementary material: PDF

Tapia-Valdebenito supplementary material

Figures S1-S4

Download Tapia-Valdebenito supplementary material(PDF)
PDF 569.2 KB