Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T15:46:39.372Z Has data issue: false hasContentIssue false

Recent benthic foraminiferal distribution and related environmental factors in Ezcurra Inlet, King George Island, Antarctica

Published online by Cambridge University Press:  24 March 2010

André Rosch Rodrigues*
Affiliation:
Instituto Oceanográfico/Universidade de São Paulo, USP, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP 05508-900, Brazil
João Carlos Cattini Maluf
Affiliation:
Instituto Oceanográfico/Universidade de São Paulo, USP, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP 05508-900, Brazil
Elisabete de Santis Braga
Affiliation:
Instituto Oceanográfico/Universidade de São Paulo, USP, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP 05508-900, Brazil
Beatriz Beck Eichler
Affiliation:
Instituto Oceanográfico/Universidade de São Paulo, USP, Praça do Oceanográfico, 191, Cidade Universitária, São Paulo, SP 05508-900, Brazil

Abstract

This investigation attempts to determine which environmental parameters of the bottom water and sediment control recent foraminifera fauna at Ezcurra Inlet (King George Island, Antarctica), using data collected during four summers (2002/03, 2003/04, 2004/05 and 2006/07). The study revealed that Ezcurra Inlet contain typical Antarctic foraminifera fauna with three distinct assemblages and few differences in environmental parameters. The species Bolivina pseudopunctata, Fursenkoina fusiformis, Portatrochammina antarctica, and Adercotryma glomerata were abundant in the samples. An elevated abundance, richness and diversity were common at the entrance of the inlet at depths greater than 55 m, where the inlet was characterized by low temperatures and muddy sand. In the inner part of the inlet (depth 30–55 m), richness and diversity were low and the most significant species were Cassidulinoides parkerianus, C. porrectus, and Psammosphaera fusca. Shallow waters showed low values of richness and abundance and high temperatures coupled with coarser sediment. In areas with high suspended matter concentrations and pH values associated with low salinity the most representative species were Hippocrepinella hirudinea and Hemisphaerammina bradyi.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aminot, A.Chaussepied, M. 1983. Manuel des analyses chimiques en milieu marin. Brest: CNEXO (Centre National pour l’Exploitation des Océans), 395 pp.Google Scholar
Arntz, W.E.Gallardo, V.A. 1994. Antarctic benthos: present position and future prospects. In Hempel, G., ed. Antarctic science: global concerns. Berlin: Springer, 243277.CrossRefGoogle Scholar
Arntz, W.E., Brey, T.Gallardo, V.A. 1994. Antarctic zoobenthos. Oceanography and Marine Biology Annual Review, 32, 241304.Google Scholar
Bernhard, J.M. 1987. Foraminiferal biotopes in Explorers Cove, McMurdo Sound, Antarctica. Journal of Foraminiferal Research, 17, 286297.CrossRefGoogle Scholar
Bernhard, J.M. 1988. Postmortem vital staining in benthic foraminifera: duration and importance in population and distributional studies. Journal of Foraminiferal Research, 18, 143146.CrossRefGoogle Scholar
Bojanowski, R. 1983. Hydrochemical observations at an anchored station in Ezcurra Inlet. Oceanologia, 15, 2164.Google Scholar
Chang, S.-K.Yoon, H.I. 1995. Foraminiferal assemblages from bottom sediments at Marian Cove, South Shetland Islands, West Antarctica. Marine Micropaleontology, 26, 223232.CrossRefGoogle Scholar
Clarke, K.R.Warwick, R.M. 1994. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory, 144 pp.Google Scholar
Culver, S.J. 1987. Foraminifera. In Broadhead, T.W., ed. Fossil prokaryotes and protists, Notes for a Short Course, University of Tennessee, Department of Geological Sciences, Studies in Geology, 18, 169–212.Google Scholar
Dayton, P.K. 1990. Polar biology. In Smith, W.O., ed. Polar oceanography, Part B: Chemistry, biology and geology. San Diego, CA: Academic Press, 631685.CrossRefGoogle Scholar
Dayton, P.K., Robilliard, G.A.Devries, A.L. 1969. Anchor ice formation in McMurdo Sound, Antarctica, and its biological effects. Science, 163, 272274.CrossRefGoogle ScholarPubMed
Demaster, D.J., Nelson, T.M., Nittrouer, C.A.Harden, S.L. 1987. Biogenic silica and organic carbon accumulation in modern Bransfield Strait sediments. Antarctic Journal of the United States, 22 (5), 108110.Google Scholar
Dufrêne, M.Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible assymetrical approach. Ecological Monographs, 67, 345366.Google Scholar
Finger, L.F.Lipps, J.H. 1981. Foraminiferal decimation and repopulation in an active volcanic caldera, Deception Island, Antarctica. Micropaleontology, 27, 111139.CrossRefGoogle Scholar
Fofonoff, P.Millard, R.C. Jr 1983. Algorithms for computation of fundamental properties of seawater. UNESCO Technical Papers in Marine Science, 44, 53 pp.Google Scholar
Gibson, L.B. 1966. Some unifying characteristics of species diversity. Contributions of the Cushman Foundation, 17, 117124.Google Scholar
Gooday, A.J., Bowser, S.S.Bernhard, J.M. 1996. Benthic foraminiferal assemblages in Explorer’s Cove, Antarctica: a shallow-water site with deep-sea characteristics. Progress in Oceanography, 37, 117166.CrossRefGoogle Scholar
Grasshoff, K. 1983. Determination of oxygen. In Grasshoff, K., Ehrhardt, M. & Kremlig, K., eds. Methods of sea water analysis. Weinheim: Verlag Chemie, 6172.Google Scholar
Grasshoff, K., Kremling, K.Ehrhardt, M., eds. 1999. Determination of trace elements. In Methods of seawater analysis, 3rd ed. Weinheim: Wiley, 253263.CrossRefGoogle Scholar
Gray, S., Sturz, A., Bruns, M.D., Marzan, R., Dougherty, D., Law, H., Brackett, J.Marcou, M. 2003. Composition and distribution of sediments and benthic foraminifera in a submerged caldera after 30 years of volcanic quiescence. Deep-Sea Research II, 50, 17271751.CrossRefGoogle Scholar
Green, K.E. 1960. Ecology of some Arctic foraminifera. Micropaleontology, 6, 5778.CrossRefGoogle Scholar
Harloff, J.Mackensen, A. 1997. Recent benthic foraminiferal associations and ecology of the Scotia Sea and Argentine Basin. Marine Micropaleontology, 31, 129.CrossRefGoogle Scholar
Hedgpeth, J.W. 1977. The Antarctic marine ecosystem. In Llano, G.A., ed. Adaptations within Antarctica ecosystems. Washington, DC: Smithsonian Institution, 310.Google Scholar
Igarashi, A., Numanami, H., Tsuchiya, Y.Fukuchi, M. 2001. Bathymetric distribution of fossil foraminifera within marine sediment cores from the eastern part of Lützow-Holm Bay, East Antarctica, and its paleoceanographic implications. Marine Micropaleontology, 42, 125162.CrossRefGoogle Scholar
Ishman, S.E.Domack, E.W. 1994. Oceanographic controls on benthic foraminifers from the Bellingshausen margin of the Antarctic Peninsula. Marine Micropaleontology, 24, 119155.CrossRefGoogle Scholar
Kaminski, M.A. 1985. Evidence for the control of abyssal agglutinated foraminiferal community structure by substrate disturbance: results from the HEBBLE area. Marine Geology, 66, 113131.CrossRefGoogle Scholar
Li, B., Yoon, H.-I.Park, B.-K. 2000. Foraminiferal assemblages and CaCO3 dissolution since the last deglaciation in the Maxwell Bay, King George Island, Antarctica. Marine Geology, 169, 239257.CrossRefGoogle Scholar
Lipski, M. 1987. Variations of physical conditions, nutrient and chlorophyll a contents in Admiralty Bay (King George Island, South Shetland Islands, 1979). Polish Polar Research, 8, 307332.Google Scholar
Mackensen, A., Grobe, H., Kuhn, G.Fütterer, D.K. 1990. Benthic foraminiferal assemblages from the eastern Weddell Sea between 68 and 73°S: distribution, ecology and fossilization potential. Marine Micropaleontology, 16, 241283.CrossRefGoogle Scholar
Majewski, W. 2005. Benthic foraminiferal assemblages from Admiralty Bay, King George Island, West Antarctica. Polish Polar Research, 26, 159214.Google Scholar
Majewski, W.Tatur, A. 2009. A new Antarctic foraminiferal species for detecting climate change in sub-Recent glacier-proximal sediments. Antarctic Science, 21, 439448.CrossRefGoogle Scholar
Majewski, W., Lecroq, B., Sinniger, F.Pawlowski, J. 2007. Monothalamous foraminifera from Admiralty Bay, King George Island, West Antarctica. Polish Polar Research, 28, 187210.Google Scholar
Marsz, A.A. 1983. From surveys of the geomorphology of shores and bottom of the Ezcurra Inlet. Oceanologia, 15, 209220.Google Scholar
Mayer, M. 2000. Zur Ökologie der Benthos-Foraminiferen der Potter Cove (King George Island, Antarktis). Berichte zur Polarforschung, 353, 1126.Google Scholar
McCune, B.Mefford, M.J. 1999. PC-ORD. Multivariate analysis of ecological data, Version 4.0. Gleneden Beach, OR: MjM Software Design, 237 pp.Google Scholar
Mikhalevich, V.I. 2004. The general aspects of the distribution of Antarctic foraminifera. Micropaleontology, 50, 179194.Google Scholar
Milam, R.W.Anderson, J.B. 1981. Distribution and ecology of Recent benthonic foraminifera of the Adélie–George V continental shelf and slope, Antarctica. Marine Micropaleontology, 6, 297325.Google Scholar
Murray, J.W.Pudsey, C. 2004. Living (stained) and dead foraminifera from the newly ice-free Larsen Ice Shelf, Weddell Sea, Antarctica: ecology and taphonomy. Marine Micropaleontology, 53, 6781.CrossRefGoogle Scholar
Pawlowski, J., Fahrni, J.F., Brykczynska, U., Habura, A.Bowser, S. 2002. Molecular data reveal high taxonomic diversity of allobromiid Foraminifera in Explorers Cove (McMurdo Sound, Antarctica). Polar Biology, 25, 96105.CrossRefGoogle Scholar
Rakusa-Suszczewski, S. 1980. Environmental conditions and the functioning of Admiralty Bay (South Shetland Islands) as a part of the near shore Antarctic ecosystem. Polish Polar Research, 1, 1127.Google Scholar
Rakusa-Suszczewski, S. 1995. The hydrography of Admiralty Bay and its inlets, coves and lagoons (King George Island, Antarctica). Polish Polar Research, 16, 6170.Google Scholar
Rodrigues, A.R. 2008. Estudo das associações de foraminíferos bentônicos recentes na Baía do Almirantado (Ilha Rei George, Antártica) durante três verões austrais consecutivos. PhD thesis, Universidade de São Paulo, 152 pp. [Unpublished.].Google Scholar
Schröder-Adams, C.J. 1990. High latitude agglutinated foraminifera: Prydz Bay (Antarctica) vs. Lancaster Sound (Canadian Arctic). In Hemleben, C., Kaminski, M.A., Kuhnt, W. & Scott, D.B., eds. Proceeedings NATO Advanced Studies Institute on Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera. NATO ASI Series, 327, 315–343.Google Scholar
Strickland, J.D.H.Parsons, T.R. 1968. A manual for sea water analysis. Bulletin Fisheries Research Board of Canada, 167, 310 pp.Google Scholar
Szafranski, Z.Lipski, M. 1982. Characteristics of water temperature and salinity at Admiralty Bay (King George Island, South Shetland Islands, Antarctic) during the austral summer 1978/1979. Polish Polar Research, 3, 724.Google Scholar
Violanti, D. 1996. Taxonomy and distribution of recent benthic foraminifers from Terra Nova Bay (Ross Sea, Antarctica), Oceanographic Campaign 1987/1988. Palaeontographia Italica, 83, 2571.Google Scholar
Ward, B.L.Webb, P.N. 1986. Late Quaternary foraminifera from raised deposits of the Cape Royds–Cape Barne area, Ross Island, Antarctica. Journal of Foraminiferal Research, 16, 176200.CrossRefGoogle Scholar
Ward, B.L., Barrett, P.J.Vella, P. 1987. Distribution and ecology of benthic foraminifera in McMurdo Sound, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 58, 139153.CrossRefGoogle Scholar