Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T21:25:51.257Z Has data issue: false hasContentIssue false

Potter Cove, west Antarctic Peninsula, shallow water meiofauna: a seasonal snapshot

Published online by Cambridge University Press:  09 May 2014

F. Pasotti*
Affiliation:
Ghent University, Marine Biology Research Group, Krijgslaan 281/S8, 9000 Ghent, Belgium
P. Convey
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK Gateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
A. Vanreusel
Affiliation:
Ghent University, Marine Biology Research Group, Krijgslaan 281/S8, 9000 Ghent, Belgium

Abstract

The meiobenthic community of Potter Cove (King George Island, west Antarctic Peninsula) was investigated, focusing on responses to summer/winter conditions in two study sites contrasting in terms of organic matter inputs. Meiofaunal densities were found to be higher in summer and lower in winter, although this result was not significantly related to the in situ availability of organic matter in each season. The combination of food quality and competition for food amongst higher trophic levels may have played a role in determining the standing stocks at the two sites. Meiobenthic winter abundances were sufficiently high to infer that energy sources were not limiting during winter, supporting observations from other studies for both shallow water and continental shelf Antarctic ecosystems. Recruitment within meiofaunal communities was coupled to the seasonal input of fresh detritus for harpacticoid copepods but not for nematodes, suggesting that species-specific life history or trophic features form an important element of the responses observed.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M.J. & Robinson, J. 2003. Generalized discriminant analysis based on distances. Australian & New Zealand Journal of Statistics, 45, 301318.Google Scholar
Anderson, M.J., Gorley, R.N. & Clarke, K.R. 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth: PRIMER-E Ltd.Google Scholar
Andrássy, I. 1956. Die Rauminhalts und Gewichtsbestimmung der Fadenwurmer (Nematoden). Acta Zoologica Academiae Scientiarum Hungaricae, 2, 115.Google Scholar
Arntz, W.E. & Gili, J.-M. 2001. A case for tolerance in marine ecology: let us not put out the baby with the bathwater. Scientia Marina, 65, 283299.Google Scholar
Bowden, D.A. 2005. Seasonality of recruitment in Antarctic sessile marine benthos. Marine Ecology Progress Series, 297, 101118.Google Scholar
Clarke, A. 1988. Seasonality in the Antarctic marine environment. Comparative Biochemistry and Physiology - Biochemistry & Molecular Biology, 90B, 461473.Google Scholar
Coull, B.C. 1999. Role of meiofauna in estuarine soft-bottom habitats. Australian Journal of Ecology, 24, 327343.CrossRefGoogle Scholar
Dring, M.J. 1982. The biology of marine plants. London: Edward Arnold, 199 pp.Google Scholar
Echeverría, C.A. & Paiva, P.C. 2006. Macrofaunal shallow benthic communities along a discontinuous annual cycle at Admiralty Bay, King George Island, Antarctica. Polar Biology, 29, 263269.Google Scholar
Gambi, C., Lampadariou, N. & Danovaro, R. 2010. Latitudinal, longitudinal and bathymetric patterns of abundance, biomass of metazoan meiofauna: importance of the rare taxa and anomalies in the deep Mediterranean Sea. Advances in Oceanography and Limnology, 1, 167197.CrossRefGoogle Scholar
Grzelak, K. & Kotwicki, L. 2012. Meiofaunal distribution in Hornsund fjord, Spitsbergen. Polar Biology, 35, 269280.Google Scholar
Heip, C., Vincx, M. & Vranken, G. 1985. The ecology of marine nematodes. Oceanography and Marine Biology, 23, 399489.Google Scholar
Hong, J.-H., Kim, K., Lee, S., Back, J., Lee, D.J. & Lee, W. 2011. The community structure of meiofauna in Marian Cove, King George Island, Antarctica. Ocean and Polar Research, 33, 265280. [Korean].CrossRefGoogle Scholar
Ingels, J., Billet, D.S.M., Kiriakoulakis, K., Wolff, G.A. & Vanreusel, A. 2011. Structural and functional diversity of Nematoda in relation with environmental variables in the Setúbal and Cascais canyons, western Iberian Margin. Deep Sea Research II - Topical Studies in Oceanography, 58, 23542368.Google Scholar
Jeffrey, S.W., Mantoura, R.F.C. & Wright, S.W., eds. 1997. Phytoplankton pigments in oceanography: guidelines to modern method. Paris: UNESCO Publishing, 661 pp.Google Scholar
Jensen, P. 1982. A new meiofauna sample splitter. Annales Zoologici Fennici, 19, 233236.Google Scholar
Jensen, P. 1984. Measuring carbon content in nematodes. Helgoland Meeresuntersuchungen, 38, 8386.Google Scholar
Jensen, P. 1987. Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic free-living marine nematodes. Oecologia, 71, 564567.CrossRefGoogle ScholarPubMed
Klöser, H., Ferreyra, G., Schloss, L., Mercuri, G., Laturnus, F. & Curtosi, A. 1994. Hydrography of Potter Cove, a small fjord-like inlet on King George Island (South Shetland). Estuarine, Coastal and Shelf Science, 38, 523537.CrossRefGoogle Scholar
Pasotti, F., de Troch, M., Raes, M. & Vanreusel, A. 2012. Feeding ecology of shallow water meiofauna: insights from a stable isotope tracer experiment in Potter Cove, King George Island, Antarctica. Polar Biology, 35, 16291640.CrossRefGoogle Scholar
Palmer, M.A. 1988. Dispersal of marine meiofauna: a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Marine Ecology Progress Series, 48, 8191.Google Scholar
Pawłowska, J., Włodarska-Kowalczuk, M., Zajaçzkowski, M., Nygård, H. & Berge, J. 2011. Seasonal variability of meio- and macrobenthic standing stocks and diversity in an Arctic fjord (Adventfjorden, Spitsbergen). Polar Biology, 34, 833845.Google Scholar
Pusceddu, A., Dell’Anno, A. & Fabiano, M. 2000. Organic matter composition in coastal sediments at Terra Nova Bay (Ross Sea) during summer 1995. Polar Biology, 23, 288293.Google Scholar
Quartino, M.L. & de Zaixso, A.L.B. 2008. Summer macroalgal biomass in Potter Cove, South Shetland Islands, Antarctica: its production and flux to the ecosystem. Polar Biology, 31, 281294.CrossRefGoogle Scholar
Quartino, M.L., Deregibus, D., Campana, G.L., Latorre, G.E.J. & Momo, F.R. 2013. Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS ONE, 8, 10.1371/journal.pone.0058223.Google Scholar
Schloss, I.R., Ferreyra, G.A. & Ruiz-Pino, D. 2002. Phytoplankton biomass in Antarctic shelf zones: a conceptual model based on Potter Cove, King George Island. Journal of Marine Systems, 36, 129143.Google Scholar
De Skowronski, R.S.P. & Corbisier, T.N. 2002. Meiofauna distribution in Martel Inlet, King George Island (Antarctica): sediment features versus food availability. Polar Biology, 25, 126134.Google Scholar
Smith, C.R., DeMaster, D.J., Tomas, C., Sršen, P., Grange, L., Evrard, V. & DeLeo, F. 2012. Pelagic-benthic coupling, food banks, and climate change on the West Antarctic Peninsula Shelf. Oceanography, 25, 188201.CrossRefGoogle Scholar
Steinarsdóttir, M.B., Ingólfsson, A. & Ólafsson, E. 2003. Seasonality of harpacticoids (Crustacea, Copepoda) in a tidal pool in sub-arctic south-western Iceland. Hydrobiologia, 503, 211221.CrossRefGoogle Scholar
Thomas, D.N., Fogg, G.E., Convey, P., Fritsen, C.H., Gilli, J.-M., Gradinger, R., Laybourne-Parry, J., Reid, K. & Walton, D.W.H. 2008. The biology of polar regions. Oxford: Oxford University Press.CrossRefGoogle Scholar
Tietjen, J.H. 1969. The ecology of shallow water meiofauna in two New England estuaries. Oecologia (Berlin), 2, 251291.CrossRefGoogle ScholarPubMed
Tita, G., Desrosiers, G., Vincx, M. & Clément, M. 2002. Intertidal meiofauna of the St Lawrence estuary (Quebec, Canada): diversity, biomass and feeding structure of nematode assemblages. Journal of the Marine Biological Association of the United Kingdom, 82, 779791.CrossRefGoogle Scholar
Vanhove, S., Beghyn, M., van Gansbeke, D., Bullough, L.W. & Vincx, M. 2000. A seasonally varying biotope at Signy Island, Antarctic: implications for meiofaunal structure. Marine Ecology Progress Series, 202, 1325.Google Scholar
Veit-Köhler, G. 2005. Influence of biotic and abiotic sediment factors on abundance and biomass of harpacticoid copepods in a shallow Antarctic bay. Scientia Marina, 69, 135145.Google Scholar
Veit-Köhler, G., Antacli, J.C. & Rose, A. 2008. Metazoan meiofauna in Potter Cove, King George Island. Berichte zur Polar- und Meeresforschung, 571, 135140.Google Scholar
Vincx, M. 1996. Meiofauna in marine and freshwater sediments. In Hall, G.S., ed. Methods for the examination of organismal diversity in soils and sediments. Wallingford: CABI Publishing, 187195.Google Scholar
Warwick, R.M., Platt, H.M. & Somerfield, P.J. 1998. Free-living marine nematodes. Part III Monhysterids: pictorial key to world genera and notes for the identification of British species. Shrewsbury: Field Studies Council, 296 pp.Google Scholar
Wentworth, C.K. 1922. A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377392.Google Scholar
Wieser, W. 1953. Die Beziehung zwischen Mundhöhlengestald, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkiv för Zoologi, 4, 439484.Google Scholar
Wieser, W. 1960. Benthic studies in Buzzards Bay. II. The meiofauna. Limnology and Oceanography, 5, 121137.CrossRefGoogle Scholar