Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T21:04:39.479Z Has data issue: false hasContentIssue false

Potential immunohaematological effects of persistent organic pollutants on chinstrap penguin

Published online by Cambridge University Press:  11 March 2015

S. Jara-Carrasco*
Affiliation:
Department of Aquatic Systems, Faculty of Environmental Sciences and EULA-Chile Centre, Universidad de Concepción, Barrio Universitario s/n, Box 160C, 4070386, Concepción, Chile
M. González
Affiliation:
Department of Biochemistry, Faculty of Pharmacy, Universidad de Concepción, Barrio Universitario s/n, Casilla 160C, 4070386, Concepción, Chile
D. González-Acuña
Affiliation:
Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Box 537, Chillán, Chile
G. Chiang
Affiliation:
Melimoyu Ecosystem Research Institute. Lo Beltran 2347 Vitacura, 7640392, Santiago, Chile
J. Celis
Affiliation:
Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Box 537, Chillán, Chile
W. Espejo
Affiliation:
Department of Aquatic Systems, Faculty of Environmental Sciences and EULA-Chile Centre, Universidad de Concepción, Barrio Universitario s/n, Box 160C, 4070386, Concepción, Chile
P. Mattatall
Affiliation:
Department of Aquatic Systems, Faculty of Environmental Sciences and EULA-Chile Centre, Universidad de Concepción, Barrio Universitario s/n, Box 160C, 4070386, Concepción, Chile Department of Biochemistry, Faculty of Pharmacy, Universidad de Concepción, Barrio Universitario s/n, Casilla 160C, 4070386, Concepción, Chile
R. Barra
Affiliation:
Department of Aquatic Systems, Faculty of Environmental Sciences and EULA-Chile Centre, Universidad de Concepción, Barrio Universitario s/n, Box 160C, 4070386, Concepción, Chile

Abstract

It has been demonstrated that persistent organic pollutants (POPs) can affect the immune system of mammals and birds. In this study, the concentration of different POPs and leukocytes in blood samples from three chinstrap penguin (Pygoscelis antarctica) populations was analysed in order to assess the impact on haematological parameters. Using blood sample smears, basophils, eosinophils, heterophils, lymphocytes and monocytes were quantified. Mature and immature red blood cells were counted and cell alterations in both white and red blood cells were analysed. At the same time, whole blood was analysed for POPs. The results showed that contaminants, such as dichlorodiphenyltrichloroethane and its metabolites (ΣDDT), as well as polychlorinated biphenyls (ΣPCB), had significant correlations to eosinophils, lymphocytes and heterophils. This indicates possible immunohaematological alterations derived from exposure to such contaminants. Cytological alterations were also observed, such as cytotoxic granules, toxic heterophils, and atypical and granulated lymphocytes, which would demonstrate that these seabirds are being exposed to stress agents that could be producing some alterations at a leukocytary cellular level.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asensio-Ramos, M., Hernández-Borges, J., Ravelo-Pérez, L.M. & Rodríguez-Delgado, M.A. 2010. Evaluation of a modified QuEChERS method for the extraction of pesticides from agricultural, ornamental and forest soils. Analytical and Bioanalytical Chemistry, 396, 23072319.Google Scholar
Ballschmiter, K., Scholz, C., Buchert, H., Zell, M., Figge, K., Polzhofer, K. & Hoerschelmann, H. 1981. Studies of the global baseline pollution. 5. Monitoring the baseline pollution of the sub-Antarctic by penguins as bioindicators. Fresenius Zeitschrift fur Analytische Chemie, 309, 10.1007/BF00493443.Google Scholar
Boersma, P.D. 2008. Penguins as marine sentinels. Bioscience, 58, 597607.Google Scholar
Brown, M.E. 1996. Assessing body condition in birds. Current Ornithology, 13, 67135.Google Scholar
Bustnes, J.O., Erikstad, K.E., Skaare, J.U., Bakken, V. & Mehlum, F. 2003. Ecological effects of organochlorine pollutants in the arctic: a study of the glaucous gull. Ecological Applications, 13, 504515.Google Scholar
Bustnes, J.O., Hanssen, S.A., Folstad, I., Erikstad, K.E., Hasselquist, D. & Skaare, J. 2004. Immune function and organochlorine pollutants in arctic breeding glaucous gulls. Archives of Environmental Contamination and Toxicology, 47, 530541.Google Scholar
Celis, J., Jara, S., González-Acuña, D., Barra, R. & Espejo, W. 2012. A preliminary study of trace metals and porphyrins in excreta of gentoo penguins (Pygoscelis papua) at two locations of the Antarctic Peninsula. Archivos de Medicina Veterinaria, 44, 311316.Google Scholar
Cimino, M.A., Fraser, W.R., Irwin, A.J. & Oliver, M.J. 2013. Satellite data identify decadal trends in the quality of Pygoscelid penguin chick-rearing habitat. Global Change Biology, 19, 136148.Google Scholar
Cipro, C.V., Colabuono, F.I., Taniguchi, S. & Montone, R.C. 2013. Persistent organic pollutants in bird, fish and invertebrate samples from King George Island, Antarctica. Antarctic Science, 25, 545552.CrossRefGoogle Scholar
Corsolini, S., Borghesi, N., Schiamone, A. & Focardi, S. 2007. Polybrominated diphenyl ethers, polychlorinated dibenzo-dioxins, -furans, and -biphenyls in three species of Antarctic penguins. Environmental Science and Pollution Research, 14, 421429.Google Scholar
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., González, L., Tablada, M. & Robledo, C.W. 2009. InfoStat version 2009. Córdoba: InfoStat Group, Facultad de Ciencias Agropecuarias, University National of Córdoba, Argentina.Google Scholar
Espejo, W., Celis, J.E., González-Acuña, D., Jara, S. & Barra, R. 2014. Concentration of trace metals in excrements of two species of penguins from different locations of the Antarctic Peninsula. Polar Biology, 37, 675683.Google Scholar
Gálvez, C., Ramírez, G. & Osorio, J. 2009. El laboratorio clínico en hematología de aves exóticas. Biosalud, 8, 178188.Google Scholar
González-Acuña, D., Hernández, J., Moreno, L., Herrmann, B., Palma, R., Latorre, A., Medina-Vogel, G., Kinsella, M.J., Martin, N., Araya, K., Torres, I., Fernandez, N. & Olsen, B. 2013. Health evaluation of wild gentoo penguins (Pygoscelis papua) in the Antarctic Peninsula. Polar Biology, 36, 17491760.Google Scholar
Graczyk, T.K., Shaw, M.L., Cranfield, M.R. & Beall, F.B. 1994. Hematologic characteristics of avian malaria cases in African black-footed penguins (Spheniscus demersus) during the first outdoor exposure season. Journal of Parasitology, 80, 302308.Google Scholar
Grasman, K.A. 2002. Assessing immunological function in toxicological studies of avian wildlife. Integrative and Comparative Biology, 42, 3442.Google Scholar
Grasman, K.A. & Fox, G.A. 2001. Associations between altered immune function and organochlorine contamination in young Caspian terns (Sterna caspia) from Lake Huron, 1997–1999. Ecotoxicology, 10, 101114.Google Scholar
Gross, W.B. & Siegel, H.S. 1983. Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Diseases, 27, 972979.Google Scholar
Hawkey, C.M., Samour, H.J., Henderson, G.M. & Hart, M.G. 1985. Hematological findings in captive gentoo penguins (Pygoscelis papua) with bumblefoot. Avian Pathology, 14, 251256.Google Scholar
Hawkey, C.M., Horsley, D.T. & Keymer, I.F. 1989. Hematology of wild penguins (Spenisciformes) in the Falkland Islands. Avian pathology, 18, 495502.Google Scholar
Henriksen, E.O., Gabrielsen, G.W., Trudeau, S., Wolkers, J., Sagerup, K. & Skaare, J.U. 2000. Organochlorines and possible biochemical effects in glaucous gulls (Larus hyperboreus) from Bjornoya, the Barents sea. Archives of Environmental Contamination and Toxicology, 38, 234243.Google Scholar
Labocha, M.K. & Hayes, J.P. 2012. Morphometric indices of body condition in birds: a review. Journal of Ornithology, 153, 10.1007/s10336-011-0706-1.Google Scholar
Lescroël, A., Ridoux, V. & Bost, C.A. 2004. Spatial and temporal variation in the diet of the gentoo penguin (Pygoscelis papua) at Kerguelen Islands. Polar Biology, 27, 206216.Google Scholar
Mandal, A., Chakraborty, S. & Lahiri, P. 1986. Hematological changes produced by lindane (γ-hch) in six species of birds. Toxicology, 40, 103111.Google Scholar
Mitchell, E.B. & Johns, J. 2008. Avian hematology and related disorders. The Veterinary clinics of North America . Exotic animal practice, 11, 501522.Google Scholar
Moreno, J., de León, A., Fargallo, J.A. & Moreno, E. 1998. Breeding time, health and immune response in the chinstrap penguin Pygoscelis antarctica . Oecologia, 115, 312319.Google Scholar
Moreno, J., Yorio, P., Garcia-Borboroglu, P., Potti, J. & Villar, S. 2002. Health state and reproductive output in magellanic penguins (Spheniscus magellanicus). Ethology, Ecology & Evolution, 14, 1928.CrossRefGoogle Scholar
Munkittrick, K.R., Arens, C.J., Lowell, R.B. & Kaminski, G.P. 2009. A review of potential methods of determining critical effect size for designing environmental monitoring programs. Environmental Toxicology and Chemistry, 28, 13611371.Google Scholar
Pérez, D.J., Menone, M.L. & Doucette, W.J. 2013. Root-to-shoot transfer and distribution of endosulfan in the wetland macrophyte Bidens laevis L. Environmental Toxicology and Chemistry, 32, 24782481.Google Scholar
Sagerup, K., Henriksen, E.O., Skorping, A., Skaare, J.U. & Gabrielsen, G.W. 2000. Intensity of parasitic nematodes is associated with organochlorine levels in the glaucous gull. Journal of Applied Ecology, 37, 10.1046/j.1365-2664.2000.00521.x.Google Scholar
Vanstreels, R.E.T., Miranda, F.R., Ruoppolo, V., Reis, A.O.D., Costa, E.S., Pessoa, A.R.D., Torres, J.P.M., da Cunha, L.S.T., Piuco, R.D., Valiati, V.H., González-Acuña, D., Labruna, M.B., Petry, M.V., Epiphanio, S. & Catao-Dias, J.L. 2014. Investigation of blood parasites of Pygoscelid penguins at the King George and Elephant Islands, South Shetlands Archipelago, Antarctica. Polar Biology, 37, 135139.Google Scholar
Van den Brink, N.W., Riddle, M.J., van den Heuvel-Greve, M. & van Franeker, J.A. 2011. Contrasting time trends of organic contaminants in Antarctic pelagic and benthic food webs. Marine Pollution Bulletin, 62, 128132.Google Scholar
Vleck, C.M., Vertalino, N., Vleck, D. & Bucher, T.L. 2000. Stress, corticosterone, and heterophil to lymphocyte ratios in free-living Adélie penguins. Condor, 102, 392400.Google Scholar
Wilson, R.P. 1997. A method for restraining penguins. Marine Ornithology, 25, 7273.Google Scholar
Zinsmeister, V.A.P. & Vanderheyden, M.J.N. 1987. Differential leucocyte cell counts from the Pygoscelid penguins of Antarctica. Journal of Wildlife Diseases, 23, 521523.Google Scholar