Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T17:24:01.422Z Has data issue: false hasContentIssue false

On the temporal variability of the Weddell Sea Deep Water masses

Published online by Cambridge University Press:  26 June 2009

Rodrigo Kerr*
Affiliation:
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG, Rio Grande, RS, Brazil 96201-900
Mauricio M. Mata
Affiliation:
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG, Rio Grande, RS, Brazil 96201-900
Carlos A.E. Garcia
Affiliation:
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG, Rio Grande, RS, Brazil 96201-900

Abstract

The Weddell Sea is one of the key regions of the Southern Ocean with respect to climate as most of the Antarctic Bottom Water (AABW) that occupies the world ocean deepest layers is likely to originate from this region. This study applies the Optimum Multiparameter water mass analysis to the Weddell deep waters in order to investigate their distribution and variability. The dataset used is based on the WOCE repeat sections in the area (SR04 and A12) from 1984 to 1998. The mean water mass distribution is consistent with previous knowledge of the region, along with high interannual variability. Regarding the temporal variability, it seems that the years of maximum Weddell Sea Deep Water (WSDW) contribution correspond to the lowest levels of Weddell Sea Bottom Water (WSBW), and vice versa. In order to identify possible forcing mechanisms for such variability, the water mass temporal anomalies were compared with oceanic and atmospheric modes of variability in that region such as the Southern Annular Mode (SAM). An apparent correlation between the SAM index temporal gradients and WSBW anomalies indicate that the Weddell Sea export of dense waters to the world ocean may be linked to that index on several time scales.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, S., Yoritaka, M. Masuyama, A. 2003. Multidecadal warming of subsurface temperature in the Indian sector of the Southern Ocean. Journal of Geophysical Research, 108, 101029/2000JC000307.CrossRefGoogle Scholar
Aoki, S., Rintoul, S.R., Ushio, S., Watanab, S. Bindoff, N.L. 2005. Freshening of the Adélie Land Bottom Water near 140°E. Geophysical Research Letters, 32, 101029/2005GL024246.CrossRefGoogle Scholar
Beckmann, A., Hellmer, H.H. Timmermann, R. 1999. A numerical model of the Weddell Sea: large-scale circulation and water mass distribution. Journal of Geophysical Research, 104, 23 37523 391.CrossRefGoogle Scholar
Busalacchi, A.J. 2004. The role of the Southern Ocean in global processes: an earth system science approach. Antarctic Science, 16, 363368.CrossRefGoogle Scholar
Carmack, E.C. 1977. Water characteristics of the Southern Ocean south of the Polar Front. Deep-Sea Research, 24, 1541.Google Scholar
Carmack, E.C. Foster, T.D. 1975. On the flow of water out of the Weddell Sea. Deep-Sea Research, 22, 711724.Google Scholar
Cavalieri, D.J. Parkinson, C.L. 2008. Antarctic sea-ice variability and trends, 1979–2006. Journal of Geophysical Research, 113, 119.CrossRefGoogle Scholar
Comiso, J.C. Gordon, A. 1998. Interannual variability in summer sea ice minimum, coastal polynyas and bottom water formation in the Weddell Sea. Antarctic Research Series, 74, 293315.Google Scholar
Emery, W.J. Thomson, R.E. 1998. Data analysis methods in physical oceanography. Amsterdam: Pergamon Press, 634 pp.Google Scholar
Fahrbach, E., Rohardt, G., Schröder, M. Strass, V. 1994. Transport and structure of the Weddell Gyre. Annales Geophysicae, 12, 840855.CrossRefGoogle Scholar
Fahrbach, E., Hoppema, M., Rohardt, G., Schröder, M. Wisotzki, A. 2004. Decadal-scale variations of water mass properties in the deep Weddell Sea. Ocean Dynamics, 54, 7791.CrossRefGoogle Scholar
Fahrbach, E., Rohardt, G., Scheele, N., Schröder, M., Strass, V. Wisotzki, A. 1995. Formation and discharge of deep and bottom water in the northwestern Weddell Sea. Journal of Marine Research, 53, 515538.CrossRefGoogle Scholar
Franco, B.C., Mata, M.M., Piola, A.R. Garcia, C.A.E. 2007. Northwestern Weddell Sea deep outflow into the Scotia Sea during the austral summers of 2000 and 2001 estimated by inverse methods. Deep-Sea Research I, 55, 18151840.CrossRefGoogle Scholar
Gille, S.T. 2002. Warming of the Southern Ocean since the 1950s. Science, 295, 12751277.CrossRefGoogle ScholarPubMed
Gong, D. Wang, S. 1999. Definition of Antarctic oscillation index. Geophysical Research Letters, 26, 459462.CrossRefGoogle Scholar
Gordon, A.L. 1974. Varieties and variability of Antarctic Bottom Water. Colloques Internationaux du CNRS, No 215, 3347.Google Scholar
Gordon, A.L. 1978. Deep Antarctic convection west of Maud Rise. Journal of Physical Oceanography, 8, 600612.2.0.CO;2>CrossRefGoogle Scholar
Gordon, A.L. 1982. Weddell Deep Water variability. Journal of Marine Research, 40, 199217.Google Scholar
Gordon, A.L. Huber, B.A. 1984. Thermohaline stratification below the Southern Ocean sea ice. Journal of Geophysical Research, 89, 641648.CrossRefGoogle Scholar
Gordon, A.L., Visbeck, M. Huber, B. 2001. Export of Weddell Sea Deep and Bottom water. Journal of Geophysical Research, 106, 90059017.CrossRefGoogle Scholar
Gouretski, V.V. Danilov, A.I. 1993. Weddell Gyre: structure of the eastern boundary. Deep-Sea Research I, 40, 561582.CrossRefGoogle Scholar
Hall, A. Visbeck, M. 2002. Synchronous variability in the Southern Hemisphere atmosphere, sea ice and ocean resulting from the annular mode. Journal of Climate, 15, 30433057.2.0.CO;2>CrossRefGoogle Scholar
Hoppema, M., Klatt, O., Roether, W., Fahrbach, E., Bulsiewicz, K., Rodehacke, C. Rohardt, G. 2001. Prominent renewal of Weddell Sea Deep Water from a remote source. Journal of Marine Research, 59, 257279.CrossRefGoogle Scholar
Huhn, O., Hellmer, H.H., Rhein, M., Rodehacke, C., Roether, W., Shodlock, M.P. Schröder, M. 2008. Evidence of deep- and bottom-water formation in the western Weddell Sea. Deep-Sea Research II, 55, 10981116.CrossRefGoogle Scholar
Karstensen, J. Tomczak, M. 1997. Ventilation processes and water mass ages in the thermocline of the southeast Indian Ocean. Geophysical Research Letters, 24, 27772780.CrossRefGoogle Scholar
Kerr, R. 2006. Distribuição, Mistura e Variabilidade das massas de água profundas do Mar de Weddell, Antártica. MSc thesis, Fundação Universidade Federal do Rio Grande – FURG, 146 pp. Available at www.oceanfisquigeo.furg.br/producaoGoogle Scholar
Kerr, R., Wainer, I. Mata, M.M. 2009. Representation of the Weddell Sea Deep Water masses in the ocean component of the NCAR-CCSM model. Antarctic Science, 21, 10.1017/S0954102009001825.CrossRefGoogle Scholar
Klatt, O., Roether, W., Hoppema, M., Bulsiewicz, K., Fleischmann, U., Rodehacke, C., Fahrbach, E., Weiss, R.F. Bullister, J.L. 2002. Repeated CFC sections at the Greenwich Meridian in the Weddell Sea. Journal of Geophysical Research, 107, 101029/2000JC000731.CrossRefGoogle Scholar
Klatt, O., Fahrbach, E., Hoppema, M. Rohardt, G. 2005. The transport of the Weddell Gyre across the prime Meridian. Deep-Sea Research II, 52, 513528.CrossRefGoogle Scholar
Kwok, R. Comiso, J.C. 2002. Spatial patterns of variability in Antarctic surface temperature: connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophysical Research Letters, 29, 101029/2002GL015415.CrossRefGoogle Scholar
Lefebvre, W. Goosse, H. 2005. Influence of the Southern Annular Mode on the sea ice-ocean system: the role of the thermal and mechanical forcing. Ocean Science, 1, 145157.CrossRefGoogle Scholar
Leffanue, H. Tomczak, M. 2004. Using OMP analysis to observe temporal variability in water mass distribution. Journal of Marine Research, 48, 314.Google Scholar
Levitus, S., Antonov, J.I. Boyer, T.B. 2005. Warming of the world ocean, 1955–2003. Geophysical Research Letters, 32, 101029/2004GL021592.CrossRefGoogle Scholar
Levitus, S., Antonov, J.I., Boyer, T.B. Stephens, C. 2000. Warming of the world. Science, 287, 22252229.CrossRefGoogle Scholar
Liu, J., Curry, J.A. Martinson, D.G. 2004. Interpretation of recent Antarctic sea ice variability. Geophysical Research Letters, 31, 101029/2003GL018732.Google Scholar
Marshall, G. 2003. Trends in the Southern Annular Mode from observations and reanalyses. Journal of Climate, 16, 41344143.2.0.CO;2>CrossRefGoogle Scholar
Mensch, M., Simom, A. Bayer, R. 1998. Tritium and CFC input functions for the Weddell Sea. Journal of Geophysical Research, 103, 1592315937.CrossRefGoogle Scholar
Meredith, M.P., Locarnini, R.A., Van Scoy, K.A., Watson, A.J., Heywood, K.J. King, B.A. 2000. On the sources of Weddell Gyre Antarctic Bottom Water. Journal of Geophysical Research, 105, 10931104.CrossRefGoogle Scholar
Meredith, M.P., Woodworth, P.L., Hughes, C.W. Stepanov, V. 2004. Changes in the ocean transport through Drake Passage during the 1980s and 1990s, forced by changes in the Southern Annular Mode. Geophysical Research Letters, 31, 101029/2004GL021169.CrossRefGoogle Scholar
Muench, R.D. Gordon, A. 1995. Circulation and transport of water along the western Weddell Sea margin. Journal of Geophysical Research, 100, 1850318515.CrossRefGoogle Scholar
Orsi, A.H., Nowlin, W.D. Whitworth, T. 1993. On the circulation and stratification of the Weddell Gyre. Deep-Sea Research I, 40, 169303.CrossRefGoogle Scholar
Orsi, A.H., Johnson, G.C. Bullister, J.L. 1999. Circulation, mixing, and production of Antarctic Bottom Water. Progress in Oceanography, 43, 55109.CrossRefGoogle Scholar
Orsi, A.H., Whitworth, T. Nowlin, W.D. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research I, 42, 641673.CrossRefGoogle Scholar
Poole, P. Tomczak, M. 1999. Optimum multiparameter analysis of the water mass structure in the Atlantic Ocean thermocline. Deep-Sea Research I, 46, 18951921.CrossRefGoogle Scholar
Robertson, R., Visbeck, M., Gordon, A.L. Fahrbach, E. 2002. Long-term temperature trends in the deep waters of the Weddell Sea. Deep-Sea Research II, 49, 47914806.CrossRefGoogle Scholar
Schlosser, P., Bullister, J.L. Bayer, R. 1991. Studies of deep water formation and circulation in the Weddell Sea using natural and anthropogenic tracers. Marine Chemistry, 35, 97122.CrossRefGoogle Scholar
Schodlok, M.P., Rodehacke, C.B., Hellmer, H.H. Beckmann, A. 2001. On the origin of the deep CFC maximum in the eastern Weddell Sea - numerical model results. Geophysical Research Letters, 28, 28592862.CrossRefGoogle Scholar
Schröder, M., Hellmer, H.H. Absy, J.M. 2002. On the near-bottom variability in the north-western Weddell Sea. Deep-Sea Research II, 49, 47674790.CrossRefGoogle Scholar
Schröder, M. Fahrbach, E. 1999. On the structure and the transport of the eastern Weddell Gyre. Deep-Sea Research II, 46, 501527.CrossRefGoogle Scholar
Simmonds, I. King, J.C. 2004. Global and hemispheric climate variations affecting the Southern Ocean. Antarctic Science, 16, 401413.CrossRefGoogle Scholar
Smedsrud, L.H. 2005. Warming of the deep water in the Weddell Sea along the Greenwich meridian: 1977–2001. Deep-Sea Research I, 52, 241258.CrossRefGoogle Scholar
Thompson, R.O.R.Y. Edwards, R.J. 1981. Mixing and water mass formation in the Australian sub-Antarctic. Journal of Physical Oceanography, 11, 13991406.2.0.CO;2>CrossRefGoogle Scholar
Thompson, D.W.J. Wallace, J.M. 2000. Annular modes in the extratropical circulation. Part I: month-to-month variability. Journal of Climate, 13, 10001016.2.0.CO;2>CrossRefGoogle Scholar
Timmermann, R., Hellmer, H.H. Beckmann, A. 2002. Simulations of ice-ocean dynamics in the Weddell Sea Part II: interannual variability 1985–1993. Journal of Geophysical Research, 107, 101029/2000JC000742.CrossRefGoogle Scholar
Tomczak, M. 1981. A multi-parameter extension of temperature/salinity diagram techniques for the analysis of non-isopycnal mixing. Progress in Oceanography, 10, 147171.CrossRefGoogle Scholar
Tomczak, M. 1999a. Some historical, theoretical and applied aspects of quantitative water mass analysis. Journal of Marine Research, 57, 275303.CrossRefGoogle Scholar
Tomczak, M. 1999b. Potential vorticity as a tracer in quantitative water mass analysis. International WOCE Newsletter, 36, 610.Google Scholar
Tomczak, M. Large, D.G.B. 1989. Optimum multiparameter analysis of mixing in the thermocline of the eastern Indian Ocean. Journal of Geophysical Research, 94, 1614116149.CrossRefGoogle Scholar
Tomczak, M. Liefrink, S. 2005. Interannual variations of water mass volumes in the Southern Oceans. Journal of Atmospheric and Ocean Science, 10, 3142.CrossRefGoogle Scholar
Visbeck, M. Hall, A. 2004. Comments on “Synchronous variability in the southern hemisphere atmosphere, sea ice, and ocean resulting from the annular mode” - Reply. Journal of Climate, 17, 22552258.2.0.CO;2>CrossRefGoogle Scholar
Weiss, R. 1981. Oxygen solubility in seawater. UNESCO Technical Papers in Marine Science, No. 35, 22.Google Scholar
Weppernig, R., Schlosser, P., Khatiwala, S. Fairbanks, R.G. 1996. Isotope data from Ice Station Weddell: implications for deep water formation in the Weddell Sea. Journal of Geophysical Research, 101, 25 72325 739.CrossRefGoogle Scholar
Yuan, X. 2005. Southern Hemisphere climate modes and the relationships with Antarctic sea ice. CLIVAR Exchanges, 10 (4), 911.Google Scholar