Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-19T17:10:23.288Z Has data issue: false hasContentIssue false

Morphologic and molecular diversity of the foraminiferal genus Globocassidulina in Admiralty Bay, King George Island

Published online by Cambridge University Press:  22 March 2010

Wojciech Majewski*
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
Jan Pawlowski
Affiliation:
Department of Zoology and Animal Biology, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH 1211 Genève 4, Switzerland

Abstract

Four distinctive morphological types can be found among living Globocassidulina in surface sediments of Admiralty Bay (King George Island, South Shetland Islands). The molecular analysis of the SSU and ITS rDNA indicates that they are monospecific and belong to Globocassidulina biora, except for minute forms from deeper than 200 m water depth which probably represent G. subglobosa. The morphological types of G. biora that show doubled or branched apertures, varied test size and shape as well as colour of cytoplasm, represent populations at different stages of ontogenetic development. However, the variability among large G. biora from the same locations is difficult to comprehend. It seems probable that G. biora is the only recent, large, shallow water Globocassidulina represented throughout the Antarctica, while G. crassa is typical for the Magellan region.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alve, E. 1991. Benthic foraminifera in sediment cores reflecting heavy metal pollution in Sorfjord, western Norway. Journal of Foraminiferal Research, 21, 119.CrossRefGoogle Scholar
Anderson, J.B. 1975. Ecology and distribution of foraminifera in the Weddell Sea of Antarctica. Micropaleontology, 21, 6996.CrossRefGoogle Scholar
Battke, Z. 1990. Admiralty Bay, King George Island. Map 1: 50 000. Warsaw: Institute of Ecology, Polish Academy of Sciences.Google Scholar
Bernhard, J.M. 1987. Foraminiferal biotopes in Explorers Cove, Antarctica. Journal of Foraminiferal Research, 17, 286297.CrossRefGoogle Scholar
Boltovskoy, E., Scott, D.B.Medioli, F.S. 1991. Morphological variations of benthic foraminiferal tests in response to changes in ecological parameters: a review. Journal of Paleontology, 65, 175185.CrossRefGoogle Scholar
Bowser, S.S., Habura, A.Pawlowski, J. 2006. Molecular evolution of foraminifera. In Katz, L. & Bhattacharya, D., eds. Genomics and evolution of microbial eukaryotes. Oxford: Oxford University Press, 7893.CrossRefGoogle Scholar
Chang, S.-K.Yoon, H.I. 1995. Foraminiferal assemblages from bottom sediments at Marian Cove, South Shetland Islands, West Antarctica. Marine Micropaleontology, 26, 223232.CrossRefGoogle Scholar
Crespin, I. 1960. Some recent foraminifera from Vestfold Hills, Antarctica. Reports of the Tahoku University (Geology), Special Volume, Series 2, 4, 1931.Google Scholar
Fillon, R.H. 1974. Late Cenozoic foraminiferal paleoecology of the Ross Sea, Antarctica. Micropaleontology, 20, 129151.CrossRefGoogle Scholar
Finger, L.F.Lipps, J.H. 1981. Foraminiferal decimation and repopulation in an active volcanic caldera, Deception Island, Antarctica. Micropaleonthology, 27, 111139.CrossRefGoogle Scholar
Galtier, N., Gouy, M.Gautier, C. 1996. SEAVIEW and PHYLO_WIN, two graphic tools for sequence alignment and molecular phylogeny. Computer Applications in the Biosciences, 12, 543548.Google ScholarPubMed
Goldstein, S.T. 1999. Foraminifera: a biological overview. In Sen Gupta,B.K.ed., Modern Foraminifera. Dordrecht: Kluwer, 3756.CrossRefGoogle Scholar
Gray, S.C., Sturz, A., Bruns, M.D., Marzan, R.L., Dougherty, D., Law, H.B., Brackett, J.E.Marcou, M. 2003. Composition and distribution of sediments and benthic foraminifera in a submerged caldera after 30 years of volcanic quiescence. Deep-Sea Research II, 50, 17271751.CrossRefGoogle Scholar
Igarashi, A., Numanami, H., Tsuchiya, Y.Fukuchi, M. 2001. Bathymetric distribution of fossil foraminifera within marine sediment cores from the eastern part of Lützow–Holm Bay, East Antarctica, and its paleoceanographic implications. Marine Micropaleontology, 42, 125162.CrossRefGoogle Scholar
Ishman, S.E. 1990. Quantitative analysis of Antarctic benthic foraminifera: application to paleoenvironmental interpretations. PhD thesis, The Ohio State University, Columbus, 266 pp. [Unpublished]Google Scholar
Ishman, S.E.Szymcek, P. 2003. Foraminiferal distributions in the former Larsen-A Ice Shelf and Prince Gustav Channel region, eastern Antarctic Peninsula margin: a baseline for Holocene paleoenvironmental interpretation. Antarctic Research Series, 79, 239260.Google Scholar
Jobb, G., von Haeseler, A.Strimmer, K. 2004. TREEFINDER: a powerful graphic analysis environment for molecular phylogenetics. BMC Evolutionary Biology, 4, 10.1186/1471-2148-4-18.CrossRefGoogle ScholarPubMed
Kellogg, D.E.Kellogg, T.B. 1987. Microfossil distributions in modern Amundsen Sea sediments. Marine Micropaleontology, 12, 203222.CrossRefGoogle Scholar
Khim, B.-K., Yoon, H.I., Kim, Y.Shon, I.C. 2001. Late Holocene stable isotope chronology and meltwater discharge event in Maxwell and Admiralty bays, King George Island, Antarctica. Antarctic Science, 13, 167173.CrossRefGoogle Scholar
Le Cadre, V.Debenay, J.-P. 2006. Morphological and cytological response of Ammonia (foraminifera) to copper contamination: Implication for the use of foraminifera as bioindicators of pollution. Environmental Pollution, 143, 304317.CrossRefGoogle ScholarPubMed
Li, B., Yoon, H.I.Park, B.K. 2000. Foraminiferal assemblages and CaCO3 dissolution since the last deglaciation in the Maxwell Bay, King George Island, Antarctica. Marine Geology, 169, 239257.CrossRefGoogle Scholar
Majewski, W. 2005. Benthic foraminiferal communities: distribution and ecology in Admiralty Bay, King George Island, West Antarctica. Polish Polar Research, 26, 159214.Google Scholar
Majewski, W.Anderson, J.B. 2009. Holocene foraminiferal assemblages from Firth of Tay, Antarctic Peninsula: Paleoclimate implications. Marine Micropaleontology, 73, 135247.CrossRefGoogle Scholar
Majewski, W., Lecroq, B., Sinniger, F.Pawłowski, J. 2007. Monothalamous foraminifera from Admiralty Bay, King George Island, West Antarctica. Polish Polar Research, 28, 187210.Google Scholar
Mayer, M. 2000. Zur Ökologie der Benthos-Foraminiferen der Potter Cove (King George Island, Antarktis). Berichte zur Polarforschung, 353, 1126.Google Scholar
Milam, R.W.Anderson, J.B. 1981. Distribution and ecology of recent benthonic foraminifera of the Adélie–George V continental shelf and slope, Antarctica. Marine Micropaleontology, 6, 297325.Google Scholar
Nomura, R. 1983. Foraminifera from the raised beach deposits on the east coast of Lutzow–Holm Bay, Antarctica. Memoirs of National Institute of Polar Research, 28, 219230.Google Scholar
Nomura, R. 1984. Cassidulinidae (Foraminiferida) from the Eastern part of the Lützow–Holm Bay, Antarctica. Transactions, Proceedings, Paleontological Society of Japan, 136, 492501.Google Scholar
Osterman, L.E.Kellogg, T.B. 1979. Recent benthic foraminiferal distributions from the Ross Sea, Antarctica: relation to ecologic and oceanographic conditions. Journal of Foraminiferal Research, 9, 250269.CrossRefGoogle Scholar
Pawlowski, J. 2000. Introduction to the molecular systematics of foraminifera. Micropaleontology, 46 (sup.1), 112.Google Scholar
Pawlowski, J., Fahrni, J., Lecroq, B., Longet, D., Cornelius, N., Excoffier, L., Cedhagen, T.Gooday, A.J. 2007. Bipolar gene flow in deep-sea benthic foraminifera. Molecular Ecology, 16, 40894096.CrossRefGoogle ScholarPubMed
Quilty, P.G. 2003. Neogene foraminifers and accessories, ODP Leg 188, Sites 1165, 1166, and 1167, Prydz Bay, Antarctica. ODP, Scientific Results, 188, 141. Available at http://www-odp.tamu.edu/publications/188_sr/volume/chapters/009.pdf.Google Scholar
Schnitker, D. 1974. Ecophenotypic variation in Ammonia beccarii (Linné). Journal of Foraminiferal Research, 4, 216223.CrossRefGoogle Scholar
Violanti, D. 1996. Taxonomy and distribution of recent benthic foraminifers from Terra Nova Bay (Ross Sea, Antarctica), Oceanographic Campaign 1987/1988. Palaeontographia Italica, 83, 2571.Google Scholar
Ward, B.L.Webb, P.N. 1986. Late Quaternary foraminifera from raised deposits of the Cape Royds–Cape Barne area, Ross Island, Antarctica. Journal of Foraminiferal Research, 16, 176200.CrossRefGoogle Scholar
Yanko, V., Ahmad, M.Kaminski, M. 1998. Morphological deformities of benthic foraminiferal tests in response to pollution by heavy metals: implications for pollution monitoring. Journal of Foraminiferal Research, 28, 177200.Google Scholar
Yoo, K.-C., Yoon, H.I., Park, B.-K.Kim, Y. 2006. Advance of the outlet glaciers during regional warming as inferred from Late Holocene massive diamicton in the King George Island fjords, the South Shetland Islands, West Antarctica. Quaternary Research, 65, 5769 (Retracted).CrossRefGoogle Scholar