Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T03:48:50.272Z Has data issue: false hasContentIssue false

Mixoxylon australe gen. et sp. nov., a unique homoxylous wood with non-angiosperm affinity from the Lower Cretaceous of Antarctica (Albian, James Ross Island)

Published online by Cambridge University Press:  20 October 2021

Oleksandra Chernomorets*
Affiliation:
Charles University, Faculty of Science, Institute of Geology and Palaeontology, Albertov 6, 128 43 Prague, Czech Republic
Jakub Sakala
Affiliation:
Charles University, Faculty of Science, Institute of Geology and Palaeontology, Albertov 6, 128 43 Prague, Czech Republic Czech Geological Survey, Klárov 3, 118 21 Prague, Czech Republic

Abstract

A unique homoxylous wood is described from the Albian Lewis Hill Member of the Whisky Bay Formation on James Ross Island as Mixoxylon australe Chernomorets & Sakala, gen. et sp. nov. This fossil taxon shows an unusual combination of features in having indistinct growth rings with a significantly wider earlywood zone than latewood zone, tracheids with scalariform to araucarian pitting, exclusively uniseriate rays with distinctly pitted both tangential and horizontal walls and araucarioid to podocarpoid cross-field pits. Its characteristics are intermediate between Phoroxylon Sze and Sahnioxylon Bose & Sah, so a new genus is proposed. Its systematic affinities are dubious, but it represents the southernmost evidence of the homoxylous Mesozoic wood with scalariform pitting described so far.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bose, M.N. 1953. Bucklandia sahnii sp. nov. from the Jurassic of the Rajmahal Hills, Bihar. Palaeobotanist, 2, 4150.Google Scholar
Bose, M.N. & Sah, S.C.D. 1954. On Sahnioxylon rajmahalense, a new name for Homoxylon rajmahalense Sahni, and S. andrewsii, a new species of Sahnioxylon from Amrapara in the Rajmahal Hills, Bihar. Palaeobotanist, 3, 18.Google Scholar
Cantrill, D.J. 2000. A petrified cycad trunk from the Late Cretaceous of the Larsen Basin, Antarctica. Alcheringa, 24, 10.1080/03115510008619534.10.1080/03115510008619534CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2005. Taxonomic turnover and abundance in Cretaceous to Tertiary wood floras of Antarctica: implications for changes in forest ecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 215, 10.1016/j.palaeo.2004.09.004.10.1016/j.palaeo.2004.09.004CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2012. The vegetation of Antarctica through geological time. Cambridge: Cambridge University Press, 480 pp.10.1017/CBO9781139024990CrossRefGoogle Scholar
Crame, J.A., Pirrie, D. & Ridding, J.B. 2006. Mid-Cretaceous stratigraphy of the James Ross Basin, Antarctica. In Francis, J.E., Pirrie, D. & Crame, J.A., eds. Cretaceous-Tertiary high-latitude palaeoenvironments, James Ross Basin, Antarctica. Special Publication of the Geological Society of London, No. 258, 719.Google Scholar
Falcon-Lang, H.J. & Cantrill, D. J. 2001. Gymnosperm woods from the Cretaceous (mid-Aptian) Cerro Negro Formation, Byers Peninsula, Livingston Island, Antarctica: the arborescent vegetation of a volcanic arc. Cretaceous Research, 22, 10.1006/cres.2001.0259.10.1006/cres.2001.0259CrossRefGoogle Scholar
Francis, J.E. & Poole, I. 2002. Cretaceous and early Tertiary climates of Antarctica: evidence from fossil wood. Palaeogeography, Palaeoclimatology, Palaeoecology, 182, 10.1016/S0031-0182(01)00452-7.10.1016/S0031-0182(01)00452-7CrossRefGoogle Scholar
Francis, J.E., Pirrie, D. & Crame, J.A., eds. 2006. Cretaceous–Tertiary high-latitude palaeoenvironments, James Ross Basin, Antarctica. Special Publication of the Geological Society of London, No. 258, 10.1144/GSL.SP.2006.258.01.01.Google Scholar
Francis, J.E., Ashworth, A., Cantrill, D.J., Crame, J.A., Howe, J., Stephens, R., et al. 2008. 100 million years of Antarctic climate evolution: evidence from fossil plants. In Cooper, A.K., Barrett, P., Stagg, H., Storey, B., Stump, E., Wise, W. & the 10th ISAES Editorial Team, eds. Antarctica: a keystone in a changing world. Washington, DC: National Academic Press, 1928.Google Scholar
Greguss, P. 1968. Xylotomy of the living Cycads, with a description of their leaves and epidermis. Budapest: Akademiai Kiadó, s260 pp.Google Scholar
Hathway, B. 2000. Continental rift to back-arc basin: Jurassic-Cretaceous stratigraphical and structural evolution of the Larsen Basin, Antarctic Peninsula. Journal of the Geological Society, London, 157, 10.1144/jgs.157.2.417.10.1144/jgs.157.2.417CrossRefGoogle Scholar
IAWA Committee. 2004. IAWA list of microscopic features for softwood identification. IAWA Journal, 25, 10.1163/22941932-90000349.Google Scholar
Jiang, Z.-K., Wang, Y.-D., Tian, N., Xie, A.-W., Zhang, W., Li, L.-Q. & Huang, M. 2019. The Jurassic fossil wood diversity from western Liaoning, NE China. Journal of Palaeogeography, 8, 10.1186/s42501-018-0018-y.10.1186/s42501-018-0018-yCrossRefGoogle Scholar
Jud, N.A., Rothwell, G.W. & Stockey, R.A. 2010. Paleoecological and phylogenetic implications of Saxicaulis meckertii gen. et sp. nov.: a bennettitalean stem from the Upper Cretaceous of western North America. International Journal of Plant Sciences, 171, 10.1086/655963.10.1086/655963CrossRefGoogle Scholar
Kvaček, J. & Sakala, J. 2012. Late Cretaceous flora of James Ross Island (Antarctica) - preliminary report. Czech Polar Reports, 1, 10.5817/CPR2011-2-9.Google Scholar
Lemoigne, Y. & Torres, T. 1988. Paléoxylogie de l'Antarctide: Sahnioxylon antarcticum n. sp. et interprétation de la double zonation des cernes des bois secondaires du genre de structure (parataxon) Sahnioxylon Bose et Sah, 1954. Comptes rendus de l'Académie des sciences. Série 2, Mécanique, physique, chimie, sciences de l'univers, sciences de la terre, 306, 939945.Google Scholar
Mantzouka, D., Karakitsios, V. & Sakala, J. 2017. Cedroxylon lesbium (Unger) Kraus from the Petrified Forest of Lesbos, lower Miocene of Greece and its possible relationship to Cedrus. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 284, 10.1127/njgpa/2017/0653.10.1127/njgpa/2017/0653CrossRefGoogle Scholar
Philippe, M. & Bamford, M.K. 2008. A key to morphogenera used for Mesozoic conifer-like woods. Review of Palaeobotany and Palynology, 148, 10.1016/j.revpalbo.2007.09.004.10.1016/j.revpalbo.2007.09.004CrossRefGoogle Scholar
Philippe, M., Cuny, G. & Bashforth, A. 2010. Ecpagloxylon mathiesenii gen. nov. et sp. nov., a Jurassic wood from Greenland with several primitive angiosperm features. Plant Systematic and Evolution, 287, 10.1007/s00606-010-0308-z.10.1007/s00606-010-0308-zCrossRefGoogle Scholar
Philippe, M., Torres, T., Zhang, W. & Zheng, S. 1999. Sahnioxylon, bois mésozoïque à aire disjointe: Chine, Inde et Antarctique occidental. Bulletin de la Société géologique de France, 170, 513519.Google Scholar
Pipo, M.L., Iglesias, A. & Bodnar, J. 2020. A new vesselless angiosperm stem with a cambial variant from the Upper Cretaceous of Antarctica. Acta Palaeontologia Polonica, 65, 10.4202/app.00697.2019.Google Scholar
Poole, I. & Cantrill, D. 2001. Fossil woods from Williams Point Beds, Livingston Island, Antarctica: a Late Cretaceous southern high latitude flora. Palaeontology, 44, 10.1111/1475-4983.00216.10.1111/1475-4983.00216CrossRefGoogle Scholar
Pujana, R.R., Raffi, M.E. & Olivero, E.B. 2017. Conifer fossil woods from the Santa Marta Formation (Upper Cretaceous), Brandy Bay, James Ross Island, Antarctica. Cretaceous Research, 77, 10.1016/j.cretres.2017.04.016.10.1016/j.cretres.2017.04.016CrossRefGoogle Scholar
Pujana, R.R., Iglesias, A., Raffi, M.E. & Olivero, E.B. 2019. Angiosperm fossil woods from the Upper Cretaceous of Western Antarctica (Santa Marta Formation). Cretaceous Research, 90, 10.1016/j.cretres.2018.06.009.Google Scholar
Ridding, J.B. & Crame, J.A. 2002. Aptian to Coniacian (Early-Late Cretaceous) palynostratigraphy of the Gustav Group, James Ross Basin, Antarctica. Cretaceous Research, 23, 10.1006/cres.2002.1024.Google Scholar
Sakala, J. & Vodrážka, R. 2014. A new species of Antarctoxylon: a contribution to the early angiosperm ecosystem of Antarctica during the Late Cretaceous. Antarctic Science, 26, 10.1017/S095410201300076X.10.1017/S095410201300076XCrossRefGoogle Scholar
Sze, H.C. 1954. On the structure and relationship of Phoroxylon scalariforme Sze. Scientia Sinica, 3, 527531.Google Scholar
Vogellehner, D. 1967. Zur Anatomie und Phylogenie mesozoischer Gymnospermenhölzer, Beitrag 4: Scalaroxylon multiradiatum n.g. sp., ein Cycadophytina Sekundärholz aus dem Keuper von Franken. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 128, 215228.Google Scholar
Vozenin-Serra, C. & Pons, D. 1990. Intérêts phylogénétique et paléoécologique des structures ligneuses homoxylées découvertes dans le Crétacé inférieur du Tibet méridional. Palaeontographica B, 126, 107127.Google Scholar