Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T22:20:37.978Z Has data issue: false hasContentIssue false

Meltwater as a source of potentially bioavailable iron to Antarctica waters

Published online by Cambridge University Press:  26 January 2017

Donata Monien*
Affiliation:
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University, PO Box 2503, D-26111 Oldenburg, Germany Current address: Leibniz Center for Tropical Marine Ecology, Fahrenheitstraße 6, 28359 Bremen, Germany
Patrick Monien
Affiliation:
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University, PO Box 2503, D-26111 Oldenburg, Germany Current address: University of Bremen, Petrology of the Ocean Crust, Klagenfurter Straße 2-4, D-28359 Bremen, Germany
Robert Brünjes
Affiliation:
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University, PO Box 2503, D-26111 Oldenburg, Germany
Tatjana Widmer
Affiliation:
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University, PO Box 2503, D-26111 Oldenburg, Germany
Arne Kappenberg
Affiliation:
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University, PO Box 2503, D-26111 Oldenburg, Germany
Adrian A. Silva Busso
Affiliation:
Instituto Nacional del Agua (DSH), Empalme J. Newbery km 1, 620, Ezeiza, Buenos Aires, Argentina
Bernhard Schnetger
Affiliation:
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University, PO Box 2503, D-26111 Oldenburg, Germany
Hans-Jürgen Brumsack
Affiliation:
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University, PO Box 2503, D-26111 Oldenburg, Germany

Abstract

Recent rapid retreat of glacial front lines and the loss of land ice along the Antarctic margins may play an important role in exporting suspended particulate matter (SPM) potentially rich in bioavailable (defined as ascorbate leachable) iron (FeA) to coastal areas of the Southern Ocean. Sediment ablation is an additional source of iron for this high-nutrient low-chlorophyll region. In Potter Cove, King George Island, meltwater streams discharge up to 18 000 mg l-1 (average 283 mg l-1) of slightly weathered, finely ground bedrock particles into coastal waters during the summer. Approximately 15% of this SPM is exported within a low-salinity surface plume into Bransfield Strait. Based on our data, an estimated 12 mg m-2 yr-1 of FeA is exported from the South Shetland Island land surface (ice-free and subglacial areas) to the surrounding coastal waters. Extrapolated to an area of 2.5x104 km2, this FeA input is comparable to the contribution from icebergs and c. 240-fold higher than aeolian input via dust. An observed rise in local sediment accumulation rates suggests that glacial erosion has been increasing over recent decades and that (sub-)glacially derived SPM is becoming more important as a source of iron to the Southern Ocean.

Type
Physical Sciences
Copyright
© Antarctic Science Ltd 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

p1

Current address: Leibniz Center for Tropical Marine Ecology, Fahrenheitstraße 6, 28359 Bremen, Germany

p2

Current address: University of Bremen, Petrology of the Ocean Crust, Klagenfurter Straße 2-4, D-28359 Bremen, Germany

References

Ardelan, M.V., Holm-Hansen, O., Hewes, C.D., Reiss, C.S., Silva, N.S., Dulaiova, H., Steinnes, E. & Sakshaug, E. 2010. Natural iron enrichment around the Antarctic Peninsula in the Southern Ocean. Biogeosciences, 7, 1125.Google Scholar
Blain, S., Tréguer, P., Belviso, S., Bucciarelli, E., Denis, M., Desabre, S., Fiala, M., Jezequel, V.M., Le Fevre, J., Mayzaud, P., Marty, J.C. & Razouls, S. 2001. A biogeochemical study of the island mass effect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean. Deep-Sea Research I - Oceanographic Research Papers, 48, 163187.Google Scholar
Breitbarth, E., Achterberg, E.P., Ardelan, M. V., Baker, A.R., Bucciarelli, E., Chever, F., Croot, P.L., Duggen, S., Gledhill, M., Hassellov, M., Hassler, C., Hoffmann, L.J., Hunter, K.A., Hutchins, D.A., Ingri, J., Jickells, T., Lohan, M.C., Nielsdottir, M.C., Sarthou, G., Schoemann, V., Trapp, J.M., Turner, D.R. & Ye, Y. 2010. Iron biogeochemistry across marine systems – progress from the past decade. Biogeosciences, 7, 10751097.CrossRefGoogle Scholar
Eraso, A. & Dominguez, M.C. 2007. Physicochemical characteristics of the subglacier discharge in Potter Cove, King George Island, Antarctica. In Tyk, A. & Stefaniak, K., eds. Karst and cryokarst. Katowice: Department of Geomorphology, University of Silesia, 111122.Google Scholar
Ermolin, E. & Silva Busso, A. 2008. Interaction between permafrost and groundwater on Potter Peninsula, King George Island (Isla 25 de Mayo), Antarctic Peninsula Region. In Wiencke, C., Ferreyra, G.A., Abele, D. & Marenssi, S., eds. The Antarctic ecosystem of Potter Cove, King George Island (Isla 25 de Mayo). Bremerhaven: Alfred Wegener Institute for Polar and Marine Research, 3138.Google Scholar
Hallet, B., Hunter, L. & Bogen, J. 1996. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global and Planetary Change, 12, 213235.Google Scholar
Hodson, A.J. & Ferguson, R.I. 1999. Fluvial suspended sediment transport from cold and warm-based glaciers in Svalbard. Earth Surface Processes and Landforms, 24, 957974.Google Scholar
Hopwood, M.J., Bacon, S., Arendt, K., Connelly, D.P. & Statham, P.J. 2015. Glacial meltwater from Greenland is not likely to be an important source of Fe to the North Atlantic. Biogeochemistry, 124, 111.Google Scholar
Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., LaRoche, J., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I. & Torres, R. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308, 6771.Google Scholar
Kim, K.Y., Lee, J., Hong, M.H., Hong, J.K., Jin, Y.K. & Shon, H. 2010. Seismic and radar investigations of Fourcade Glacier on King George Island, Antarctica. Polar Research, 29, 298310.Google Scholar
Kraus, S. 2005. Magmatic dyke systems of the South Shetland Islands volcanic arc (West Antarctica): reflections of the geodynamic history. PhD thesis, Ludwig-Maximilian University Munich, 130 pp. [Unpublished].Google Scholar
Lefévre, N. & Watson, A.J. 1999. Modelling the geochemical cycle of iron in the oceans and its impact on atmospheric CO2 concentrations. Global Biogeochemical Cycles, 13, 727736.CrossRefGoogle Scholar
Lis, H., Shaked, Y., Kranzler, C., Keren, N. & Morel, F.M.M. 2015. Iron bioavailability to phytoplankton: an empirical approach. ISME Journal, 9, 10031013.Google Scholar
Majewski, W., Wellner, J.S., Szczuciński, W. & Anderson, J.B. 2012. Holocene oceanographic and glacial changes recorded in Maxwell Bay, West Antarctica. Marine Geology, 326, 6779.CrossRefGoogle Scholar
Markussen, T.N., Elberling, B., Winter, C. & Andersen, T.J. 2016. Flocculated meltwater particles control Arctic land-sea fluxes of labile iron. Scientific Reports, 6, 10.1038/srep24033.Google Scholar
März, C., Poulton, S.W., Beckmann, B., Küster, K., Wagner, T. & Kasten, S. 2008. Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochimica et Cosmochimica Acta, 72, 37033717.Google Scholar
Monien, P., Schnetger, B., Brumsack, H.-J., Hass, H.C. & Kuhn, G. 2011. A geochemical record of late Holocene palaeoenvironmental changes at King George Island (Maritime Antarctica). Antarctic Science, 23, 255267.Google Scholar
Monien, P., Lettmann, K.A., Monien, D., Asendorf, S., Wölfl, A.-C., Lim, C.H., Thal, J., Schnetger, B. & Brumsack, H.-J. 2014. Redox conditions and trace metal cycling in coastal sediments from the Maritime Antarctic. Geochimica et Cosmochimica Acta, 141, 2644.Google Scholar
Nesbitt, H.W. & Young, G.M. 1984. Prediction of some weathering trends of plutonic and volcanic-rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 15231534.Google Scholar
Osmanoglu, B., Navarro, F.J., Hock, R., Braun, M. & Corcuera, M.I. 2014. Surface velocity and mass balance of Livingston Island ice cap, Antarctica. Cryosphere, 8, 18071823.Google Scholar
Pecherzewski, K. 1980. Distribution and quantity of suspended matter in Admiralty Bay (King George Island, South Shetland Islands). Polish Polar Research, 1, 7582.Google Scholar
Planquette, H., Sherrell, R.M., Stammerjohn, S. & Field, M.P. 2013. Particulate iron delivery to the water column of the Amundsen Sea, Antarctica. Marine Chemistry, 153, 1530.Google Scholar
Planquette, H., Statham, P.J., Fones, G.R., Charette, M.A., Moore, C.M., Salter, I., Nédélec, F.H., Taylor, S.L., French, M., Baker, A.R., Mahowald, N. & Jickells, T.D. 2007. Dissolved iron in the vicinity of the Crozet Islands, Southern Ocean. Deep-Sea Research II - Topical Studies in Oceanography, 54, 19992019.Google Scholar
Pritchard, H.D., Ligtenberg, S.R.M., Fricker, H.A., Vaughan, D.G., van den Broeke, M.R. & Padman, L. 2012. Antarctic ice sheet loss driven by basal melting of ice shelves. Nature, 484, 502505.Google Scholar
Raiswell, R. & Canfield, D.E. 2012. The iron biogeochemical cycle past and present. Geochemical Perspectives, 1, 120.Google Scholar
Raiswell, R., Vu, H.P., Brinza, L. & Benning, L.G. 2010. The determination of labile Fe in ferrihydrite by ascorbic acid extraction: methodology, dissolution kinetics and loss of solubility with age and de-watering. Chemical Geology, 278, 7079.Google Scholar
Rignot, E., Bamber, J.L., van den Broeke, M.R., Davis, C., Li, Y.H., van de Berg, W.J. & van Meijgaard, E. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience, 1, 106110.Google Scholar
Roese, M. & Drabble, M. 1998. Wind driven circulation in Potter Cove. In Wiencke, C., Ferreyra, G.A., Arntz, W. & Rinaldi, C., eds. The Potter Cove coastal ecosystem, Antarctica. Bremerhaven: Alfred Wegener Institute for Polar and Marine Research and Buenos Aires: Instituto Antartico Argentino, 4046.Google Scholar
Rückamp, M., Braun, M., Suckro, S. & Blindow, N. 2011. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global and Planetary Change, 79, 99109.Google Scholar
Sanchez-Cabeza, J.A. & Ruiz-Fernández, A.C. 2012. Pb-210 sediment radiochronology: an integrated formulation and classification of dating models. Geochemica et Cosmochimica Acta, 82, 183200.Google Scholar
Schloss, I.R., Ferreyra, G.A., Mercuri, G. & Kowalke, J. 1999. Particle flux in an Antarctic shallow coastal environment: a sediment trap study. Scientia Marina, 63 (Sup. 1), 99111.Google Scholar
Schloss, I.R., Wasilowska, A., Dumont, D., Almandoz, G.O., Hernando, M.P., Michaud-Tremblay, C.-A., Saravia, L., Rzepecki, M., Monien, P., Monien, D., Kopczynska, E.E., Bers, A.V. & Ferreyra, G.A. 2014. On the phytoplankton bloom in coastal waters of southern King George Island (Antarctica) in January 2010: an exceptional feature? Limnology and Oceanography, 59, 195210.Google Scholar
Shaked, Y. & Lis, H. 2012. Disassembling iron availability to phytoplankton. Frontiers in Microbiology, 3, 10.3389/fmicb.2012.00123.CrossRefGoogle ScholarPubMed
Shaw, T.J., Raiswell, R., Hexel, C.R., Vu, H.P., Moore, W.S., Dudgeon, R. & Smith, K.L. 2011. Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea. Deep Sea Research II - Topical Studies in Oceanography, 58, 13761383.Google Scholar
Steig, E.J., Schneider, D.P., Rutherford, S.D., Mann, M.E., Comiso, J.C. & Shindell, D.T. 2009. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459462. Corrigendum: Nature, 460, 766.Google Scholar
Varela, L. 1998. Hydrology of Matias and Potter creeks. In Wiencke, C., Ferreyra, G.A., Arntz, W. & Rinaldi, C., eds. The Potter Cove coastal ecosystem, Antarctica. Bremerhaven: Alfred Wegener Institute for Polar and Marine Research and Buenos Aires: Instituto Antartico Argentino, 3339.Google Scholar
Vogt, S. & Braun, M. 2004. Influence of glaciers and snow cover on terrestrial and marine ecosystems as revealed by remotely sensed data. Pesquisa Antártica Brasileira, 4, 105118.Google Scholar
Wagener, T., Guieu, C., Losno, R., Bonnet, S. & Mahowald, N. 2008. Revisiting atmospheric dust export to the Southern Hemisphere ocean: biogeochemical implications. Global Biogeochemical Cycles, 22, 10.1029/2007GB002984.Google Scholar
Wölfl, A.-C., Lim, C.H., Hass, H.C., Lindhorst, S., Tosonotto, G., Lettmann, K.A., Kuhn, G., Wolff, J.-O. & Abele, D. 2014. Distribution and characteristics of marine habitats in a subpolar bay based on hydroacoustics and bed shear stress estimates – Potter Cove, King George Island, Antarctica. Geo-Marine Letters, 34, 435446.CrossRefGoogle Scholar
Yeo, J.P., Lee, J.I., Hur, S.D. & Choi, B.G. 2004. Geochemistry of volcanic rocks in Barton and Weaver peninsulas, King George Island, Antarctica: implications for arc maturity and correlation with fossilized volcanic centers. Geosciences Journal, 8, 1125.Google Scholar
Supplementary material: PDF

Monien supplementary material S1

Monien supplementary material

Download Monien supplementary material S1(PDF)
PDF 259.8 KB
Supplementary material: File

Monien supplementary material S2

Appendix

Download Monien supplementary material S2(File)
File 62.1 KB
Supplementary material: PDF

Monien supplementary material S3

Monien supplementary material

Download Monien supplementary material S3(PDF)
PDF 259.5 KB
Supplementary material: File

Monien supplementary material S4

Appendix

Download Monien supplementary material S4(File)
File 62 KB