Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T17:26:36.400Z Has data issue: false hasContentIssue false

Magnetic screening and heavy metal pollution studies in soils from Marambio Station, Antarctica

Published online by Cambridge University Press:  29 June 2007

Marcos A.E. Chaparro*
Affiliation:
CONICET and IFAS, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil, Argentina
Héctor Nuñez
Affiliation:
Instituto Antártico Argentino (IAA), Cerrito 1248, 1010 Buenos Aires, Argentina
Juan M. Lirio
Affiliation:
Instituto Antártico Argentino (IAA), Cerrito 1248, 1010 Buenos Aires, Argentina
Claudia S.G. Gogorza
Affiliation:
CONICET and IFAS, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil, Argentina
Ana M. Sinito
Affiliation:
CONICET and IFAS, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil, Argentina
*
*corresponding author: [email protected]

Abstract

Magnetic screening as a cost-effective and non-time-consuming approach has been successfully carried out in Marambio soils and seems to be a suitable method for contamination assessment in Antarctic areas. Ferromagnetic minerals are found in most samples, and magnetite-like carriers are especially dominant in samples collected near pollution sources. Lead and zinc are the main trace elements that have adversely impacted on some areas in this station, both are end products from different pollution sources derived from fuel combustion and residues, solid waste, paints, etc. The correlation results between magnetic and chemical variables show moderate relationships varying from 0.409 to 0.663; this fact supports the use of magnetic parameters, such as magnetic susceptibility and bivariate ratios, for pollution monitoring. The magnetic properties, heavy metal contents, and related maps of these soils can be considered as a reference in the area for future temporal and/or spatial work.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agraz, J.L., Sánchez, R.A., Rinaldi, C.A. & Acero, J.M. 1998. Environmental review of the Argentine activities at Marambio Station. Publicación Especial, Dirección Nacional del Antártico, Instituto Antártico Argentino, 73 pp.Google Scholar
Andersson, J.G. 1906. On the geology of Graham Land. Bulletin of the Geological Institution of Upsala, 7, 1971.Google Scholar
Angulo, E. 1996. The Tomlinson pollution load index applied to heavy metal “Mussel-Watch” data: a useful index to assess coastal pollution. Science of the Total Environment, 187, 1956.Google Scholar
Beckwith, P.R., Ellis, J.B., Revitt, D.M. & Oldfield, F. 1986. Heavy metal and magnetic relationships for urban source sediments. Physics of the Earth and Planetary Interiors, 42, 6775.Google Scholar
Bityukova, L., Scholger, R. & Birke, M. 1999. Magnetic susceptibility as indicator of environmental pollution of soils in Tallin. Physics and Chemistry of the Earth (A), 24, 829835.Google Scholar
Boyko, T., Scholger, R., Stanjek, H. & MAGPROX Team 2004. Topsoil magnetic susceptibility mapping as a tool for pollution monitoring: repeatability of in situ measurements. Journal of Applied Geophysics, 55, 249259.Google Scholar
Chaparro, M.A.E. 2006. Estudio de parámetros magnéticos de distintos ambientes relativamente contaminados en Argentina y Antártida. MONOGRAFIAS, Geofísica UNAM, Monografía No. 7, 107 pp.Google Scholar
Chaparro, M.A.E. & Sinito, A.M. 2004. An alternative experimental method to discriminate magnetic phases using IRM acquisition curves and magnetic demagnetization by alternating field. Brazilian Journal of Geophysics, 22, 1732.Google Scholar
Chaparro, M.A.E., Bidegain, J.C., Sinito, A.M., Jurado, S. & Gogorza, C.S. 2004. Relevant magnetic parameters and heavy metals from relatively polluted stream-sediments - spatial distribution along a cross-city stream in Buenos Aires province, Argentina. Studia Geophysica et Geodaetica, 48, 615636.Google Scholar
Chaparro, M.A.E., Lirio, J.M., Nuñez, H., Gogorza, C.S.G. & Sinito, A.M. 2005. Preliminary magnetic studies of lagoon and stream sediments from Chascomús Area (Argentina) - magnetic parameters as indicators of heavy metal pollution and some results of using an experimental method to separate magnetic phases. Environmental Geology, 49, 3043.Google Scholar
Chaparro, M.A.E., Gogorza, C.S.G., Chaparro, M.A.E., Irurzun, M.A. & Sinito, A.M. 2006. Review of magnetism and pollution studies of various environments in Argentina. Earth, Planets and Space, 58, 14111422.Google Scholar
Ciaralli, L., Giordano, R., Lombardi, G., Beccaloni, E., Sepe, A. & Costantini, S. 1998. Antarctic marine sediments: distribution of elements and textural characters. Microchemical Journal, 59, 7788.Google Scholar
Claridge, C.G.C., Campbell, I.B., Powel, H.K.J., Amim, Z.H. & Balks, M.R. 1995. Heavy metal contamination in some soils of the McMurdo Sound region, Antartica. Antarctic Science, 7, 914.CrossRefGoogle Scholar
Davis, J.C. 1986. Statistics and data analysis in geology, 2nd ed. New York: John Wiley, 383 pp.Google Scholar
Dankers, P.H.M. 1978. Magnetic properties of dispersed natural iron-oxides of known grain-size. PhD thesis, State University of Utrecht, 142 pp. [Unpublished.]Google Scholar
Dankers, P.H.M. 1981. Relationship between median destructive field and remanent coercive forces for dispersed natural magnetite, titanomagnetite and hematite. Geophysical Journal of the Royal Astronomical Society, 64, 447461.Google Scholar
Desenfant, F., Petrovský, E. & Rochette, P. 2004. Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from southern France. Water, Air and Soil Pollution, 152, 297312.Google Scholar
Dunlop, J. & Özdemir, Ö. 1997. Rock magnetism. Fundamentals and frontiers. Cambridge: Cambridge University Press, 573 pp.Google Scholar
Frache, R., Abelmoschi, M.L., Baffi, F., Ianni, C., Magi, E. & Soggia, F. 2001. Trace metals in particulate and sediments. In Caroli, S., Cescon, P. & Walton, D.W.H., eds. Environmental contamination in Antarctica: a challenge to analytical chemistry. Oxford: Elsevier Science, 406 pp.Google Scholar
Fukuda, M., Strelin, J., Shimokawa, K., Takahashi, N., Sone, T. & Trombotto, D. 1992. Permafrost occurrence of Seymour Island and James Ross Island, Antarctic Peninsula Region. In Yoshida, Y., Kaminuma, K. & Shiraishi, K., eds. Recent progress in Antarctica earth science. Tokyo: Terrapub, 745750.Google Scholar
Gazdzicki, A., Tatur, A., Hara, U. & Del Valle, R.A. 2004. The Weddell Sea Formation: post-Late Pliocene terrestrial glacial deposits on Seymour Island, Antarctic Peninsula. Polish Polar Research, 25, 189204.Google Scholar
Groeneweg, W.J. & Beunk, F.F. 1992. The petrography and geochemistry of the King George Island supergroup and Admiralty Bay group volcanics, South Shetland Islands. In López-Martinez, J., ed. Geología de la Antártida Occidental. Salamanca: III Congreso Geológico de España y VIII Congreso Latinoamericano de Geología, 4660.Google Scholar
Hanesch, M. & Scholger, R. 2002. Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environmental Geology, 42, 857870.Google Scholar
Heller, F., Strzyszcz, Z. & Magiera, T. 1998. Magnetic record of industrial pollution in soils of Upper Silesia, Poland. Journal of Geophysical Research, 103, 1776717774.Google Scholar
Jordanova, N.V., Jordanova, D.V., Veneva, L., Andorova, K. & Petrovský, E. 2003. Magnetic response of soils and vegetation to heavy metal pollution – a case study. Environmental Science and Technology, 37, 44174424.Google Scholar
Kapicka, A., Petrovský, E., Ustjak, S. & Machácková, K. 1999. Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in Czech Republic. Journal of Geochemical Exploration, 66, 291297.Google Scholar
Kennicutt, M.C., Mcdonald, S.J., Sericano, J.L., Boothe, P., Oliver, J., Safe, S., Presley, B.J., Li, H., Wolfe, D., Wade, T.L., Crockett, A. & Bockus, D. 1995. Human contamination of the marine environment - Arthur Harbor and McMurdo Sound, Antarctica. Environmental Science and Technology, 29, 12791287.Google Scholar
King, J., Banerjee, S.K., Marvin, J. & Özdemir, Ö. 1982. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth and Planetary Science Letters, 59, 404419.Google Scholar
Lecoanet, H., Léveque, F. & Ambrosi, J.P. 2003. Combination of magnetic parameters: an efficient way to discriminate soil-contamination sources (southern France). Environmental Pollution, 122, 229234.Google Scholar
Lenihan, H.S. 1992. Benthic marine pollution around McMurdo Station, Antarctica: a summary of findings. Marine Pollution Bulletin, 25, 318323.Google Scholar
Lenihan, H.S., Oliver, J.S., Oakden, J.M. & Stephenson, M.D. 1990. Intense and localized benthic marine pollution around McMurdo Station, Antarctica. Marine Pollution Bulletin, 21, 422430.Google Scholar
Magiera, T., Strzyszcz, Z., Kapicka, A., Petrovský, E. & The MAGPROX Team 2006. Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma, 130, 299311.Google Scholar
Maher, B.A., Thompson, R. & Hounslow, M.W. 1999. Introduction. In Maher, B.A. & Thompson, R., eds. Quaternary climate, environments and magnetism. Cambridge: Cambridge University Press, 148.Google Scholar
Malagnino, E.C., Olivero, E.B., Rinaldi, C.A. & Spikerman, J.P. 1981. Depósitos glaciarios del grupo de islas James Ross, Antártida. Asociación Geológica Argentina, revista, 38, 120125.Google Scholar
Matzka, J. & Maher, B.A. 1999. Magnetic biomonitoring of roadside tree leaves: identification of spatial and temporal variations in vehicle-derived particulates. Atmospheric Environment, 33, 45654569.Google Scholar
Merlin, O.H., Salvador, G.L., Vitturi, L.M., Pistolato, M. & Rampazzo, G. 1989. Preliminary results on trace element geochemistry of sediments from the Ross sea, Antarctica. Bolletino di Oceanologia Teorica ed Aplicata, 7, 97108.Google Scholar
Microcal Software Inc. 1999. Origin user's manual, version 6.0. Microcal Software Inc. USA, 774 pp.Google Scholar
Peters, C. & Dekkers, M. 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Physics and Chemistry of the Earth, 28, 659667.Google Scholar
Petrovský, E., Kapicka, A., Jordanova, N., Knob, M. & Hoffmann, V. 2000. Low field susceptibility: a proxy method of estimating increased pollution of different environmental systems. Environmental Geology, 39, 312318.Google Scholar
Pride, D.E., Cox, C.A., Moody, S.V., Conelea, R.R. & Rosen, M.A. 1990. Investigation of mineralization in the South Shetland Islands, Gerlache Strait, and Anvers Island, northern Antarctic Peninsula. Antarctic Research Series, 51, 6994.Google Scholar
Protocol on Antarctic Treaty to the Environmental Protection 1991. XI Antarctic Treaty Special Consultative Meeting, Madrid, Spain. [available at http://www.antarctica.ac.uk/About_Antarctica/Treaty/protocol.html]Google Scholar
Santos, I.R., Silva-Filho, E.V., Schaefer, C.E., Albuquerque-Filho, M.R. & Campos, L.S. 2005. Heavy metals contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Marine Pollution Bulletin, 50, 185194.Google Scholar
Santos, I.R., Silva-Filho, E.V., Schaefer, C.E., Sella, S.M., Silva, C., Gomes, V., Passos, M.J. & Van Ngan, P. 2006. Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environmental Pollution, 140, 304311.Google Scholar
Schaefer, C.E., Francelino, M.R., Simas, F.N. & Costa, L.M. 2004. Geología e Geotectônica da Península Keller, Antártica marítima. In Schaefer, C.E., Francelino, M.R., Simas, F.N. & Albuquerque-Filho, M.R., eds. Ecossistemas costeiros e monitoramento ambiental da Antártica marítima, Baía do Almirantado, Ilha Rei George. Viçosa: NEPUT, 713.Google Scholar
Schibler, L., Boyko, T., Ferdyn, M., Gajda, B., Höll, S., Jordanova, N., Rösler, W. & The MAGPROX team 2002. Topsoil magnetic susceptibility mapping: data reproducibility and compatibility, measurement strategy. Studia Geophysica et Geodaetica, 46, 4357.Google Scholar
Sheppard, D.S., Claridge, G.G.C. & Campbell, I.B. 2000. Metal contamination of soils at Scott Base, Antarctica. Applied Geochemistry, 15, 513530.Google Scholar
Spiteri, C., Kalinski, V., Rösler, W., Hoffmann, V., Appel, E. & The MAGPROX Team 2005. Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils. Environmental Geology, 49, 19.Google Scholar
Sugiura, N. 1979. ARM, TRM and magnetic interactions: concentration dependence. Earth Planetary Science Letters, 42, 451455.Google Scholar
Tauxe, L. 1993. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Reviews of Geophysics, 31, 319354.Google Scholar
Thompson, R. & Oldfield, F. 1986. Environmental magnetism. London: Allen & Unwin, 225 pp.Google Scholar
Vodopivez, C., Smichowski, P. & Marcovecchio, J. 2001. Trace metals monitoring as a tool for characterization of Antarctic ecosystems and environmental management. The Argentine program at Jubany Station. In Caroli, S., Cescon, P. & Walton, D.W.H., eds. Environmental contamination in Antarctica: a challenge to analytical chemistry. Oxford: Elsevier Science, 406 pp.Google Scholar
Webster, J., Webster, K., Nelson, P. & Waterhouse, E. 2003. The behaviour of residual contaminants at a former station site, Antarctica. Environmental Pollution, 123, 163179.Google Scholar
Weiss, D. 1983. Metody chemické analýzy nerostných surovin. [Testing methods of mineral raw samples.] Díly 1, 2, 3. Prague: ÚÚG, 458 pp.Google Scholar
Zinsmeister, W.J. & DeVries, T.J. 1983. Quaternary glacial marine deposits on Seymour Island. Antarctic Journal of the United States, 18, 6465.Google Scholar