Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T01:41:23.877Z Has data issue: false hasContentIssue false

Macrobenthic communities of the north-western Ross Sea shelf: links to depth, sediment characteristics and latitude

Published online by Cambridge University Press:  02 December 2010

V.J. Cummings*
Affiliation:
National Institute of Water and Atmospheric Research, Private Bag 14-901, Wellington, New Zealand
S.F. Thrush
Affiliation:
National Institute of Water and Atmospheric Research, PO Box 11-115, Hillcrest, Hamilton, New Zealand DipTeRis, Università di Genova, Corso Europa 26, 16132 Genova, Italy
M. Chiantore
Affiliation:
DipTeRis, Università di Genova, Corso Europa 26, 16132 Genova, Italy
J.E. Hewitt
Affiliation:
National Institute of Water and Atmospheric Research, PO Box 11-115, Hillcrest, Hamilton, New Zealand
R. Cattaneo-Vietti
Affiliation:
DipTeRis, Università di Genova, Corso Europa 26, 16132 Genova, Italy

Abstract

In early 2004 the Victoria Land Transect project sampled coastal north-western Ross Sea shelf benthos at Cape Adare, Cape Hallett, Cape Russell and Coulman Island from 100–500 m deep. We describe the benthic macrofaunal assemblages at these locations and, to assess the use of seafloor sediment characteristics and/or depth measures in bioregionalizations, determine the extent to which assemblage compositions are related to measured differences in these factors. Percentages of fine sand and silt, the ratio of sediment chlorophyll a to phaeophytin, and depth were identified as important explanatory variables, but in combination they explained only 17.3% of between-location differences in assemblages. Consequently, these variables are clearly not strong determinants of macrofaunal assemblage structure. Latitude per se was not a useful measure of community variability and change. A significant correlation between both number of individuals and number of taxa and sediment phaeophytin concentration across locations suggests that the distribution of the benthos reflects their response to seafloor productivity. A number of factors not measured in this study have probably influenced the structure and function of assemblages and habitats. We discuss the implications of the results to marine classifications, and stress the need to incorporate biogenic habitat complexity into protection strategies.

Type
Research Article
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agardy, T. 2005. Global marine conservation policy versus site-level implementation: the mismatch of scale and its implications. Marine Ecology Progress Series, 300, 242248.CrossRefGoogle Scholar
Arntz, W.E. 1999. Magellan–Antarctic: ecosystems that drifted apart. Summary review. Scientia Marina, 63, 503511.CrossRefGoogle Scholar
Arntz, W.E., Gutt, J. Klages, M. 1997. Antarctic marine biodiversity. In Battaglia, B., Valencia, J., Walton, D.W.H., eds. Antarctic communities: species, structure and survival. Cambridge: Cambridge University Press, 314.Google Scholar
Barry, J.P., Grebmeier, J.M., Smith, J. Dunbar, R.B. 2003. Oceanographic versus seafloor-habitat control of benthic megafaunal communities in the S.W. Ross Sea, Antarctica. Antarctic Research Series, 78, 327354.CrossRefGoogle Scholar
Borchgrevink, C.E. 1901. First on the Antarctic continent: being an account of the British Antarctic Expedition 1898–1900. London: George Newnes, 333 pp.Google Scholar
Bullivant, J.S. 1967a. Ecology of Ross Sea benthos. New Zealand Department of Scientific and Industrial Research Bulletin, No. 176, 4975.Google Scholar
Bullivant, J.S. 1967b. New Zealand Oceanographic Institute Ross Sea investigations, 1958–60: general account and station list. New Zealand Department of Scientific and Industrial Research Bulletin, 176, 929.Google Scholar
Chiantore, M., Cattaneo-Vietti, R., Albertelli, G., Misic, C. Fabiano, M. 1998. Role of filtering and biodeposition by Adamussium colbecki in circulation of organic matter in Terra Nova Bay (Ross Sea, Antarctica). Journal of Marine Systems, 17, 411424.CrossRefGoogle Scholar
Choudhury, M. Brandt, A. 2007. Composition and distribution of benthic isopod (Crustacea, Malacostraca) families off the Victoria Land coast (Ross Sea, Antarctica). Polar Biology, 30, 14311437.CrossRefGoogle Scholar
Clarke, K.R. Gorely, R.N. 2001. Primer-E version 5. Plymouth: NERC, Plymouth Marine Laboratory.Google Scholar
Conlan, K.E., Lenihan, H.S., Kvitek, R.G. Oliver, J.S. 1998. Ice scour disturbance to benthic communities in the Canadian High Arctic. Marine Ecology Progress Series, 166, 116.CrossRefGoogle Scholar
Cummings, V., Thrush, S., Norkko, A., Andrew, N., Hewitt, J., Funnell, G. Schwarz, A.-M. 2006. Accounting for local scale variability in benthos: implications for future assessments of latitudinal trends in the coastal Ross Sea. Antarctic Science, 18, 633644.CrossRefGoogle Scholar
De Domenico, F., Chiantore, M., Buongiovanni, S., Ferranti, M.P., Ghione, S., Thrush, S., Cummings, V., Hewitt, J., Kroeger, K. Cattaneo-Vietti, R. 2006. Latitude versus local effects on echinoderm assemblages along the Victoria Land coast, Ross Sea, Antarctica. Antarctic Science, 18, 655662.CrossRefGoogle Scholar
Dell, R.K. 1972. Antarctic benthos. Advances in Marine Biology, 10, 1216.CrossRefGoogle Scholar
Gambi, M.C. Bussotti, S. 1999. Composition, abundance and stratification of soft-bottom macrobenthos from selected areas of the Ross Sea shelf (Antarctica). Polar Biology, 21, 347354.CrossRefGoogle Scholar
Gerdes, D., Hilbig, B. Montiel, A. 2003. Impact of iceberg scouring on macrobenthic communities in the high-Antarctic Weddell Sea. Polar Biology, 26, 295301.CrossRefGoogle Scholar
Grant, S., Constable, A., Raymond, B. Doust, S. 2006. Bioregionalisation of the Southern Ocean: report of Experts Workshop, Hobart, September 2006. WWF-Australia and ACE CRC, 45 pp.Google Scholar
Gutt, J. 2001. On the direct impact of ice on marine benthic communities: a review. Polar Biology, 24, 553564.CrossRefGoogle Scholar
Hewitt, J.E., Thrush, S.F., Legendre, P., Funnell, G.A., Ellis, J. Morrison, M. 2004. Mapping of marine soft-sediment communities: integrated sampling for ecological interpretation. Ecological Applications, 14, 12031216.CrossRefGoogle Scholar
Kröger, K. Rowden, A.A. 2008. Polychaete assemblages of the northwestern Ross Sea shelf: worming out the environmental drivers of Antarctic benthic assemblage composition. Polar Biology, 31, 971989.CrossRefGoogle Scholar
Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 16591673.CrossRefGoogle Scholar
Legendre, P. Legendre, L. 1998. Numerical ecology, 2nd ed. Amsterdam: Elsevier Science, 853 pp.Google Scholar
Lenihan, H.S. Oliver, J.S. 1995. Anthropogenic and natural disturbances to marine benthic communities in Antarctica. Ecological Applications, 5, 311326.Google Scholar
Levin, L.A. Dayton, P.K. 2009. Integration and application of ecological theory on continental margins. Trends in Ecology & Evolution, 24, 606617.CrossRefGoogle Scholar
Lombard, A.T., Reyers, B., Schonegevel, L.Y., Cooper, J., Smith-Adao, L.B., Nel, D.C., Froneman, P.W., Ansorge, I.J., Bester, M.N., Tosh, C.A., Strauss, T., Akkers, T., Gon, O., Leslie, R.W. Chown, S.L. 2007. Conserving pattern and process in the Southern Ocean: designing a marine protected areas for the Prince Edward Islands. Antarctic Science, 19, 3954.CrossRefGoogle Scholar
McCullagh, P. Nelder, J.A. 1989. Generalised linear models, 2nd ed. London: Chapman and Hall, 511 pp.CrossRefGoogle Scholar
Miller, K.A. Pearse, J.S. 1991. Ecological studies of seaweeds in McMurdo Sound, Antarctica. American Zoologist, 31, 3548.CrossRefGoogle Scholar
Norkko, A., Thrush, S.F., Cummings, V.J., Gibbs, M.M., Andrew, N.L., Norkko, J. Schwarz, A.-M. 2007. Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology, 88, 28102820.CrossRefGoogle ScholarPubMed
Povero, P., Castellano, M., Ruggieri, N., Monticelli, L.S., Saggiomo, V., Chiantore, M., Guidetti, M. Cattaneo-Vietti, R. 2006. Water column features and their relationship with sediments and benthic communities along the Victoria Land coast, Ross Sea, summer 2004. Antarctic Science, 18, 603613.CrossRefGoogle Scholar
Pusceddu, A., Dell’Anno, A. Fabiano, M. 2000. Organic matter composition in coastal sediments at Terra Nova Bay (Ross Sea) during summer 1995. Polar Biology, 23, 288293.CrossRefGoogle Scholar
Rehm, P., Thatje, S., Muehlenhardt-Siegel, U. Brandt, A. 2007. Composition and distribution of the peracarid crustacean fauna along a latitudinal transect off Victoria Land (Ross Sea, Antarctica) with special emphasis on the Cumacea. Polar Biology, 30, 871881.CrossRefGoogle Scholar
Rehm, P., Thatje, S., Arntz, W.E., Brandt, A. Heilmayer, O. 2006. Distribution and composition of macrozoobenthic communities along a Victoria Land Transect (Ross Sea, Antarctica). Polar Biology, 29, 782790.CrossRefGoogle Scholar
Sartory, D.P. 1982. Spectrophotometric analysis of chlorophyll a in freshwater phytoplankton. Report No. TR 115. Pretoria: Hydrological Research Institute, Department of Environment Affairs, 163 pp.Google Scholar
Sas Institute. 1999. SAS/STAT user’s guide, ver. 8. Cary, NC: SAS Institute, 3809 pp.Google Scholar
Schiaparelli, S., Lörz, A.-N. Cattaneo-Vietti, R. 2006. Diversity and distribution of mollusc assemblages on the Victoria Land coast and the Balleny Islands, Ross Sea, Antarctica. Antarctic Science, 18, 614631.CrossRefGoogle Scholar
Schwarz, J.N. Schodlok, M.P. 2009. Impact of drifting icebergs on surface phytoplankton biomass in the Southern Ocean: ocean colour remote sensing and in situ iceberg tracking. Deep-Sea Research I, 56, 17271741.CrossRefGoogle Scholar
Sharp, B.R., Parker, S.J., Pinkerton, M.H., Breen, B.B., Cummings, V., Dunn, A., Grant, S.M., Hanchet, S.M., Keys, H.J.R., Lockhart, S.J., Lyver, P.O., O’Driscoll, R.L., Williams, M.J.M. Wilson, P.R. 2010. Bioregionalisation and spatial ecosystem processes in the Ross Sea Region. Document WG-EMM-10/30. Hobart, TAS: CCAMLR.Google Scholar
Teixido, N., Garrabou, J., Gutt, J. Arntz, W.E. 2004. Recovery in Antarctic benthos after iceberg disturbance: trends in benthic composition, abundance and growth forms. Marine Ecology Progress Series, 278, 116.CrossRefGoogle Scholar
ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 11671179.CrossRefGoogle Scholar
ter Braak, C.J.F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio, 69, 6977.CrossRefGoogle Scholar
Thrush, S.F., Gray, J.S., Hewitt, J.E. Ugland, K.I. 2006b. Predicting the effects of habitat homogenization on marine biodiversity. Ecological Applications, 16, 16361642.CrossRefGoogle ScholarPubMed
Thrush, S.F., Dayton, P.K., Cattaneo-Vietti, R., Chiantore, M., Cummings, V.J., Andrew, N.L., Hawes, I., Kim, S., Kvitek, R. Schwarz, A.-M. 2006a. Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea. Deep Sea Research II, 53, 959971.CrossRefGoogle Scholar
Van de Koppel, J., Rietkerk, M., Dankers, N. Herman, P.M.J. 2005. Scale-dependent feedback and regular spatial patterns in young mussel beds. American Naturalist, 165, E66E77.CrossRefGoogle ScholarPubMed
Van Nes, E.H., Amaro, T., Scheffer, M. Duineveld, G.C.A. 2007. Possible mechanisms for a marine benthic regime shift in the North Sea. Marine Ecology Progress Series, 330, 3947.CrossRefGoogle Scholar
Warwick, R.M. Clarke, K.R. 2001. Practical measures of marine biodiversity based on relatedness of species. Oceanography and Marine Biology: an Annual Review, 39, 207231.Google Scholar
Wiencke, C. Clayton, M.N. 2002. Biology of Antarctic seaweeds. Ruggell, Liechtenstein: Gantner, 239 pp.Google Scholar
Zajac, R.N., Lewis, R.S., Poppe, L.J., Twichell, D.C., Vozarik, J. DiGiacomo-Cohen, M.L. 2003. Responses of infaunal populations to benthoscape structure and the potential importance of transition zones. Limnology and Oceanography, 48, 829842.CrossRefGoogle Scholar