Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T20:50:45.442Z Has data issue: false hasContentIssue false

Geochemistry of recent lacustrine sediments from Fildes Peninsula, King George Island, maritime Antarctica

Published online by Cambridge University Press:  22 April 2015

Juan A. Alfonso*
Affiliation:
Centro de Oceanología y Estudios Antárticos, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020A, Venezuela
Yaneth Vasquez
Affiliation:
Centro de Oceanología y Estudios Antárticos, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020A, Venezuela
Ana C. Hernandez
Affiliation:
Centro de Oceanología y Estudios Antárticos, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020A, Venezuela
Abrahan Mora
Affiliation:
Centro de Oceanología y Estudios Antárticos, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020A, Venezuela
Helga Handt
Affiliation:
Centro de Oceanología y Estudios Antárticos, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020A, Venezuela
Eloy Sira
Affiliation:
Centro de Oceanología y Estudios Antárticos, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020A, Venezuela

Abstract

Comprehensive geochemical analyses (bulk parameters, major and trace elements, organic matter, mineralogy and particle analysis) were carried out on sediments from seven lakes on Fildes Peninsula, King George Island. The resulting compositional dataset was subjected to principal component analysis and cluster analysis. The results showed that four different lacustrine sedimentary environments can be distinguished: i) lakes 1 and 2 with relatively high values of secondary aluminous clay minerals, ii) lake 4 with anthropogenic enrichment of Co, Cu and Zn, iii) lake 7 with relatively high values of Ba and P and a high zeolite content, and iv) all the other studied lakes. Our results indicate moderate chemical weathering in all lacustrine sediments and that the distance to the glacial ice margin is one of the most important factors influencing the chemical weathering in the area. Furthermore, depositional processes have little influence on the geochemistry of the investigated elements and that local bedrock is the main source of sediments in the lakes on Fildes Peninsula.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfonso, J.A., Martínez, M., Flores, S. & Benzo, Z. 2006. Distribution of trace elements in offshore sediments of the Orinoco Delta. Journal of Coastal Research, 22, 502510.CrossRefGoogle Scholar
Birkeland, P.W. 1999. Soils and geomorphology, 3rd edition. New York, NY: Oxford University Press, 432 pp.Google Scholar
Brunskill, G.J., Orpin, A.R., Zagorskis, I., Woolfe, K.J. & Ellison, J. 2001. Geochemistry and particle size of surface sediments of Exmouth Gulf, northwest shelf, Australia. Continental Shelf Research, 21, 157201.CrossRefGoogle Scholar
Campbell, I.B. & Claridge, G.G.C. 1987. Antarctica: soils, weathering processes and environment. Amsterdam: Elsevier, 406 pp.Google Scholar
Casalino, C.A., Malandrino, M., Giacomino, A. & Abollino, O. 2013. Total and fractionation metal contents obtained with sequential extraction procedures in a sediment core from Terra Nova Bay, West Antarctica. Antarctic Science, 25, 8398.CrossRefGoogle Scholar
Cortizas, A.M., Muniz, I.R., Taboada, T., Toro, M., Granados, I., Giralt, S. & Pla-Rabes, S. 2014. Factors controlling the geochemical composition of Limnopolar Lake sediments (Byers Peninsula, Livingston Island, South Shetland Island, Antarctica) during the last ca. 1600 years. Solid Earth, 5, 651663.CrossRefGoogle Scholar
Fedo, C.M., Nesbitt, H.W. & Young, G.M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosoles, with implications for paleoweathering conditions and provenance. Geology, 23, 921924.2.3.CO;2>CrossRefGoogle Scholar
Griffiths, C.M. 1987. Piggeonholes and petrography. In Aminzadeh, F., ed. Pattern recognition and image processing, vol. 20. London: Geophysical Press, 539557.Google Scholar
Hall, K. 1993. Enhanced bedrock weathering in association with late-lying snowpatches: evidence from Livingston Island, Antarctica. Earth Surface Processes and Landforms, 18, 121129.CrossRefGoogle Scholar
Hamdan, J. & Burnham, C.P. 1996. The contribution of nutrients from parent material in three deeply weathered soils of Peninsular Malaysia. Geoderma, 74, 219233.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F. & Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101110.CrossRefGoogle Scholar
Jeong, G.Y., Yoon, H.I. & Lee, S.Y. 2004. Chemistry and microstructures of clay particles in smectite-rich shelf sediments, South Shetland Islands, Antarctica. Marine Geology, 209, 1930.CrossRefGoogle Scholar
Lee, K., Yoon, S.K. & Yoon, H.I. 2009. Holocene paleoclimate changes determined using diatom assemblages from Lake Long, King George Island, Antarctica. Journal of Paleolimnology, 42, 110.CrossRefGoogle Scholar
Lee, Y.I., Lim, H.S. & Yoon, H.I. 2004. Geochemistry of soils of King George Island, South Shetland Islands, West Antarctica: implications for pedogenesis in cold polar regions. Geochimica et Cosmochimica Acta, 68, 43194333.CrossRefGoogle Scholar
Li, S.P., Ochyra, R., Wu, P.C., Seppelt, R.D., Cai, M.H., Wang, H.Y. & Li, C.S. 2009. Drepanocladus longifolius (Amblystegiaceae), an addition to the moss flora of King George Island, South Shetland Islands, with a review of Antarctic benthic mosses. Polar Biology, 32, 14151425.CrossRefGoogle Scholar
Liu, X.D., Sun, L.G., Xie, Z.Q., Yin, X.B. & Wang, Y.H. 2005. A 1300-year record of penguin populations at Ardley Island in the Antarctic, as deduced from the geochemical data in the ornithogenic lake sediments. Arctic, Antarctic and Alpine Research, 37, 490498.CrossRefGoogle Scholar
Loring, D.H. & Rantala, R.T.T. 1992. Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth Science Reviews, 32, 235283.CrossRefGoogle Scholar
Lu, Z.B., Cai, M.H., Wang, J., Yang, H.Z. & He., J.F. 2011. Baseline values for metals in soils on Fildes Peninsula, King George Island, Antarctica: the extent of anthropogenic pollution. Environmental Monitoring and Assessment, 184, 70137021.CrossRefGoogle Scholar
Lyons, W.B., Welch, K.A., Welch, S.A., Camacho, A., Rochera, C., Michaud, L., Dewit, R. & Carey, A.E. 2013. Geochemistry of streams from Byers Peninsula, Livingston Island. Antarctic Science, 25, 181190.CrossRefGoogle Scholar
Machado, A., Lima, E.F., Chemale, J.F., Morata, D., Oteiza, O., Almeida, D.P.M., Figueiredo, A.M.G., Alexandre, F.M. & Urrutia, J.L. 2005. Geochemistry constraints of Mesozoic-Cenozoic calc-alkaline magmatism in the South Shetland arc, Antarctica. Journal of South American Earth Sciences, 18, 407425.CrossRefGoogle Scholar
Malandrino, M., Abollino, O., Buoso, S., Casalino, C.E., Gasparon, M., Giacomino, A., La Gioia, C. & Mentasti, E. 2009. Geochemical characterization of Antarctic soils and lacustrine sediments from Terra Nova Bay. Microchemical Journal, 92, 2131.CrossRefGoogle Scholar
Majer, A.P., Petti, M.A.V., Corbisier, T.N., Ribeiro, A.P., Theophilo, C.Y.S., Ferreira, P.A.D. & Figueira, R.C.L. 2014. Bioaccumulation of potentially toxic trace elements in benthic organisms of Admiralty Bay (King George Island, Antarctica). Marine Pollution Bulletin, 79, 321325.CrossRefGoogle Scholar
Mendoça, T., Melo, V.F., Schaefer, C.E.G.R., Simas, F.N.B. & Michel, R.F.M. 2013. Clay mineralogy of gelic soils from the Fildes Peninsula, maritime Antarctica. Soil Science Society of America Journal, 77, 18421851.CrossRefGoogle Scholar
Michel, R.F.M., Schaefer, C.E.G.R., Lopez-Martinez, J., Simas, F.N.B., Haus, N.W., Serrano, E. & Bockheim, J.G. 2014. Soils and landforms from Fildes Peninsula and Ardley Island, maritime Antarctica. Geomorphology, 225, 7686.CrossRefGoogle Scholar
Monien, P., Schnetger, B., Brumsack, H.J., Hass, H.C. & Kuhn, G. 2011. A geochemical record of late Holocene palaeoenvironmental changes at King George Island (maritime Antarctica). Antarctic Science, 23, 255267.CrossRefGoogle Scholar
Navas, A., Lopez-Martinez, J., Casas, J., Machin, J., Duran, J.J., Serrano, E., Cuchi, J.A. & Mink, S. 2008. Soil characteristics on varying lithological substrates in the South Shetland Island, maritime Antarctica. Geoderma, 144, 123139.CrossRefGoogle Scholar
Nedbalová, L., Nývlt, D., Kopáček, J., Šobr, M. & Elster, J. 2013. Freshwater lakes of Ulu Peninsula, James Ross Island, north-east Antarctic Peninsula: origin, geomorphology and physical and chemical limnology. Antarctic Science, 25, 358372.CrossRefGoogle Scholar
Nesbitt, H.W. & Wilson, R.E. 1992. Recent chemical weathering of basalts. American Journal of Science, 292, 740777.CrossRefGoogle Scholar
Nesbitt, H.W. & Young, G.M. 1982. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715717.CrossRefGoogle Scholar
Quayle, W.C., Peck, L.S., Peat, H., Ellis-Evans, J.C. & Harrigan, P.R. 2002. Extreme responses to climate change in Antarctic lakes. Science, 295, 645.CrossRefGoogle ScholarPubMed
Rakusa-Suszczewski, S. 2002. King George Island – South Shetland Island, maritime Antarctic. In Beyer, L. & Bölter, M., eds. Geoecology of Antarctic ice free coastal landscapes. Berlin: Springer, 2340.CrossRefGoogle Scholar
Reimann, C., Filzmoser, P. & Garrett, R.G. 2002. Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17, 185206.CrossRefGoogle Scholar
Santos, I.R., Silva, E.V., Schaefer, C.E.G.R., Albuquerque-Filho, M.R. & Campos, L.S. 2005. Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Marine Pollution Bulletin, 50, 185194.CrossRefGoogle ScholarPubMed
Siegel, F.R. 2002. Sources and origins of the metals. In Siegel F.R., eds. Environmental geochemistry of potentially toxic metals. Berlin: Springer, 1544.CrossRefGoogle Scholar
Smellie, J.L., Pankhurst, R., Thomson, M.R.A. & Davies, R.E.S. 1984. The geology of the South Shetland Islands, VI. Stratigraphy, geochemistry and evolution. British Antarctic Survey Scientific Report, no. 87, 85 pp.Google Scholar
Statsoft. 2004. STATISTICA (data analysis software system), version 7. Available at: www.statsoft.com.Google Scholar
Veinott, G., Perron-Cashman, S. & Anderson, M.R. 2001. Baseline metal concentrations in coastal Labrador sediments. Marine Pollution Bulletin, 42, 187192.CrossRefGoogle ScholarPubMed