Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T05:05:30.242Z Has data issue: false hasContentIssue false

Evidence for the continued existence of Abraxas Lake, Vestfold Hills, East Antarctica during the Last Glacial Maximum

Published online by Cambridge University Press:  16 February 2009

John A.E. Gibson*
Affiliation:
Marine Research Laboratories, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, TAS 7001, Australia School of Zoology, University of Tasmania, Private Bag 5, Hobart, TAS 7001, Australia
Kristina S. Paterson
Affiliation:
Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, TAS 7001, Australia
Camille A. White
Affiliation:
School of Zoology, University of Tasmania, Private Bag 5, Hobart, TAS 7001, Australia
Kerrie M. Swadling
Affiliation:
Marine Research Laboratories, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia School of Zoology, University of Tasmania, Private Bag 5, Hobart, TAS 7001, Australia
*
*Address for correspondence: Marine Research Laboratories, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia[email protected]

Abstract

Evidence is provided from a sediment core from saline Abraxas Lake, Vestfold Hills, that indicates that the lake existed through the Last Glacial Maximum. It can therefore be concluded that at least part of the Vestfold Hills also remained ice-free through the Last Glacial Maximum, or at most was covered by a thin, non-erosive cold-based ice sheet. The evidence for the continued existence of Abraxas Lake includes a 14C date that significantly predates the Last Glacial Maximum (though this cannot be considered direct proof of the existence of the lake prior to the Last Glacial Maximum); the presence of saline porewater throughout the core, including in compacted sediments deposited during the glacial period, which implies that the lake obtained its salt prior to any Holocene marine highstand; and the occurrence of marine-derived fauna from the onset of significant biological activity late in the Pleistocene. The occurrence of ice-free land in the Vestfold Hills and similar oases suggests that the margin of the polar ice cap did not reach far beyond its current position at the Last Glacial Maximum, at least in regions now occupied by these oases.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, D.A. & Pickard, J. 1986. Cainozoic history of the Vestfold Hills. In Pickard, J., ed. Antarctic oasis: terrestrial environments and history of the Vestfold Hills. Sydney: Academic Press, 6397.Google Scholar
Anderson, J.B., Shipp, S.S., Lowe, A.L., Wellner, J.S. & Mosola, A.B. 2002. The Antarctic ice sheet during the Last Glacial Maximum and its subsequent retreat history: a review. Quaternary Science Reviews, 21, 4970.CrossRefGoogle Scholar
Bayly, I.A.E. & Eslake, D. 1989. Vertical distributions of a planktonic harpacticoid and a calanoid (Copepoda) in a meromictic Antarctic lake. Hydrobiologia, 172, 207214.CrossRefGoogle Scholar
Bentley, M.J. 1999. Volume of Antarctic ice at the Last Glacial Maximum, and its impact on global sea level change. Quaternary Science Reviews, 18, 15691595.CrossRefGoogle Scholar
Berkman, P.A., Andrews, J.T., Bjorck, S., Colhoun, E.A., Emslie, S.D., Goodwin, I.D., Hall, B.L., Hart, C.P., Hirakawa, K., Igarashi, A., Ingólfsson, O., Lopez-Martinez, J., Lyons, W.B., Mabin, M.C.G., Quilty, P.G., Taviani, M. & Yoshida, Y. 1998. Circum-Antarctic coastal environmental shifts during the Late Quaternary reflected by emerged marine deposits. Antarctic Science, 10, 345362.CrossRefGoogle Scholar
Bird, M.I., Chivas, A.R., Radnell, C.J. & Burton, H.R. 1991. Sedimentological and stable-isotope evolution of lakes in the Vestfold Hills, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 84, 109130.CrossRefGoogle Scholar
Björck, D., Hjort, C., Ingólfsson, Ó. & Skog, G. 1991. Radiocarbon dates from the Antarctic Peninsula region - problems and potential. Quaternary Proceedings, 1, 5565.Google Scholar
Blake, W. 1989. Inferences concerning climatic change from a deeply frozen lake on Rundfjeld, Ellesmere Island, Arctic Canada. Journal of Paleolimnology, 2, 4154.CrossRefGoogle Scholar
Briner, J.P., Axford, Y., Forman, S.L., Miller, G.H. & Wolfe, A.P. 2007. Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology, 35, 887890.CrossRefGoogle Scholar
Burgess, J.S., Spate, A.P. & Shevlin, J. 1994. The onset of deglaciation in the Larsemann Hills, eastern Antarctica. Antarctic Science, 6, 491495.CrossRefGoogle Scholar
Burton, H.R. & Hamond, R. 1981. Harpacticoid copepods from a saline lake in the Vestfold Hills, Antarctica. Australian Journal of Marine and Freshwater Research, 32, 465467.CrossRefGoogle Scholar
Chappell, J. & Shackleton, N.J. 1986. Oxygen isotopes and sea level. Nature, 324, 137140.CrossRefGoogle Scholar
Colhoun, E.A., Mabin, M.C.G., Adamson, D.A. & Kirk, R.M. 1992. Antarctic ice volume and contribution to sea-level fall at 20,000 yr bp from raised beaches. Nature, 358, 316319.CrossRefGoogle Scholar
Convey, P., Gibson, J.A.E., Hillenbrand, C., Hodgson, D.A., Pugh, P.J.A., Smellie, J.L. & Stevens, M.I. 2008. Antarctic terrestrial life - challenging the history of the frozen continent? Biological Reviews, 83, 103117.CrossRefGoogle ScholarPubMed
Coolen, M.J.L., Hopmans, E.C., Rijpstra, W.I.C., Muyzer, G., Schouten, S., Volkman, J.K. & Sinninghe Damsté, J.S. 2004. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental changes. Organic Geochemistry, 35, 11511167.CrossRefGoogle Scholar
Cromer, L., Gibson, J.A.E., Swadling, K.M. & Ritz, D.A. 2005. Faunal microfossils: indicators for ecological change in an Antarctic saline lake. Palaeogeography, Palaeoclimatology, Palaeoecology, 221, 8397.CrossRefGoogle Scholar
Fink, D., Hotchkiss, M., Hua, Q., Jacobsen, G., Smith, A.M., Zoppi, U., Child, D., Mifsud, C., van der Gaast, H., Williams, A. & Williams, M. 2004. The ANTARES AMS facility at ANSTO. Nuclear Instruments and Methods in Physics Research, B223/224, 109115.CrossRefGoogle Scholar
Gibson, J.A.E. 1999. The meromictic lakes and stratified marine basins of the Vestfold Hills, East Antarctica. Antarctic Science, 11, 175192.CrossRefGoogle Scholar
Gibson, J.A.E., Ferris, J.M., van den Hoff, J. & Burton, H.R. 1989. Temperature profiles of saline lakes of the Vestfold Hills. ANARE Research Notes, 67, 175.Google Scholar
Gibson, J.A.E., Quilty, P.G., Swadling, K.M., Cromer, L. & Paterson, K.S. 2008. Paratrochammina minutissima n. sp. in brackish, marine-derived lakes of the Vestfold Hills, East Antarctica. Journal of Foraminiferal Research, 38, 292297.CrossRefGoogle Scholar
Gore, D.B. 1997. Blanketing snow and ice; constraints on radiocarbon dating deglaciation in East Antarctic oases. Antarctic Science, 9, 336346.CrossRefGoogle Scholar
Gore, D.B. & Colhoun, E.A. 1997. Regional contrasts in weathering and glacial sediments: long-term subaerial exposure of Vestfold Hills. In Ricci, C.A., ed. The Antarctic region: geological evolution and processes. Siena: Terra Antarctic Publication, 835839.Google Scholar
Gore, D.B., Rhodes, E.J., Augustinus, P.C., Leishman, M.R., Colhoun, E.A. & Rees-Jones, J. 2001. Bunger Hills, East Antarctica: ice free at the Last Glacial Maximum. Geology, 29, 11031106.2.0.CO;2>CrossRefGoogle Scholar
Hayashi, M. & Yoshida, Y. 1994. Holocene raised beaches in the Lützow–Holm Bay region, East Antarctica. Memoirs of the National Institute for Polar Research, 50, 4984.Google Scholar
Hendy, C.H. 2000. The role of polar lake ice as a filter for glacial lacustrine sediments. Geografisker Annaler, 82A, 271274.CrossRefGoogle Scholar
Hendy, C.H., Sadler, A.J., Denton, G.H. & Hall, B.L. 2000. Proglacial lake-ice conveyors: a new mechanism for deposition of drift in polar environments. Geografisker Annaler, 82A, 249270.CrossRefGoogle Scholar
Hodgson, D.A., Noon, P.E., Vyverman, W., Bryant, C.L., Gore, D.B., Appleby, P., Gilmour, M., Verleyen, E., Sabbe, K., Jones, V.J., Ellis-Evans, J.C. & Wood, P.B. 2001. Were the Larsemann Hills ice-free through the Last Glacial Maximum? Antarctic Science, 13, 440454.CrossRefGoogle Scholar
Hodgson, D.A., Verleyen, E., Sabbe, K., Squier, A.H., Keely, B.J., Leng, M.J., Saunders, K.M. & Vyverman, W. 2005a. Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multi-proxy evidence from a lake sediment core. Quaternary Research, 64, 8399.CrossRefGoogle Scholar
Hodgson, D.A., Vyverman, W., Verleyen, E., Leavitt, P.R., Sabbe, K., Squier, A.H. & Keely, B.J. 2005b. Late Pleistocene record of elevated UV radiation in an Antarctic lake. Earth and Planetary Science Letters, 236, 765772.CrossRefGoogle Scholar
Hodgson, D.A., Verleyen, E., Squier, A.H., Sabbe, K., Keely, B.J., Saunders, K.M. & Vyverman, W. 2006. Interglacial environments of coastal east Antarctica: comparison of MIS 1 (Holocene) and MIS 5e (Last Interglacial) lake-sediment records. Quaternary Science Reviews, 25, 179197.CrossRefGoogle Scholar
Igarashi, A., Harada, N. & Moriwaki, K. 1995. Marine fossils of 30–40 m raised beach deposits and late Pleistocene glacial history around Lützow–Holm Bay, East Antarctica. Proceedings of the NIPR Symposium on Antarctic Geosciences, 8, 219229.Google Scholar
Ingólfsson, Ó. 2004. Quaternary glacial and climate history of Antarctica. In Ehlers, J. & Gibbard, P.L., eds. Quaternary glaciations - extent and chronology, Part III. Amsterdam: Elsevier, 343.Google Scholar
Ingólfsson, Ó., Hjort, C., Berkman, P.A., Björck, S., Colhoun, E., Goodwin, I.D., Hall, B., Hirakawa, K., Melles, M., Möller, P. & Prentice, M.L. 1998. Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land. Antarctic Science, 10, 326344.CrossRefGoogle Scholar
Kelly, M.A., Denton, G.H. & Hall, B.L. 2002. Late Cenozoic paleoenvironment in southern Victoria Land, Antarctica, based on a polar glaciolacustrine deposit in western Victoria Valley. Geological Society of America Bulletin, 114, 605618.2.0.CO;2>CrossRefGoogle Scholar
Leng, M.J., Lamb, A.L., Heaton, T.H.E., Marshall, J.D., Wolfe, B.B., Jones, M.D., Holmes, J.A. & Arrowsmith, C. 2006. Isotopes in lake sediments. In Leng, M.J., ed. Isotopes in palaeoenvironmental research. Dordrecht: Springer, 147184.CrossRefGoogle Scholar
Matsubaya, O., Sakai, H., Torii, T., Burton, H. & Kerry, K. 1979. Antarctic saline lakes - stable isotopic ratios, chemical compositions and evolution. Geochimica et Cosmochimica Acta, 43, 125.CrossRefGoogle Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G. & Reimer, P.J. 2004. SHCal04 Southern Hemisphere calibration 0–10000 cal bp. Radiocarbon, 46, 10871092.CrossRefGoogle Scholar
Melles, M., Verkulich, S.R. & Hermichen, W. 1994. Radiocarbon dating of lacustrine and marine sediments from the Bunger Hills, East Antarctica. Antarctic Science, 6, 375378.CrossRefGoogle Scholar
Perriss, S.J. & Laybourn-Parry, J. 1997. Microbial communities in saline lakes of the Vestfold Hills (eastern Antarctica). Polar Biology, 18, 135144.CrossRefGoogle Scholar
Priscu, J.C., Fritsen, C.H., Adams, E.E., Giovannoni, S.J., Paerl, H.W., McKay, C.P., Doran, P.T., Gordon, D.A., Lanoil, B.D. & Pinckney, J.L. 1998. Perennial Antarctic lake ice: an oasis for life in a polar desert. Science, 280, 20952098.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J. & Weyhenmeyer, C.E. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr bp. Radiocarbon, 46, 10291058.Google Scholar
Roberts, D. & McMinn, A. 1996. Relationships between surface sediment diatom assemblages and water chemistry gradients in saline lakes of the Vestfold Hills, Antarctica. Antarctic Science, 8, 331341.CrossRefGoogle Scholar
Roberts, D. & McMinn, A. 1997. Palaeosalinity reconstruction from saline lake diatom assemblages in the Vestfold Hills, Antarctica. In Lyons, W.B., Howard-Williams, C. & Hawes, I., eds. Ecosystem processes in Antarctic ice-free landscapes, Rotterdam: A.A. Balkema, 207219.Google Scholar
Roberts, D. & McMinn, A. 1999a. Diatoms of the saline lakes of the Vestfold Hills, Antarctica. Bibliotheca Diatomologica, 44, 183.Google Scholar
Roberts, D. & McMinn, A. 1999b. A diatom-based palaeosalinity history of Ace Lake, Vestfold Hills, Antarctica. The Holocene, 9, 401408.CrossRefGoogle Scholar
Stark, S.C., O'Grady, B.V., Burton, H.R. & Carpenter, P.D. 2003. Frigidly concentrated seawater and the evolution of Antarctic saline lakes. Australian Journal of Chemistry, 56,181186.CrossRefGoogle Scholar
Stuiver, M., Denton, G.H., Hughes, T.J. & Fastook, J.L. 1981. History of the marine ice sheet in West Antarctica during the last deglaciation: a working hypothesis. In Denton, G.H. & Hughes, T.J., eds. The Last Great Ice Sheets. New York: John Wiley & Sons, 319436.Google Scholar
Stuiver, M., Reimer, P.J. & Reimer, R.W. 2005. CALIB 5.0. http://calib.qub.ac.uk/calib/download.Google Scholar
Takada, M., Tani, A., Miura, H., Moriwaki, K. & Nagatomo, T. 2003. ESR dating of fossil shells in the Lutzow–Holm Bay Region, East Antarctica. Quaternary Science Reviews, 22, 13231328.CrossRefGoogle Scholar
van Ommen, T.D., Morgan, V. & Curran, M.A.J. 2004. Deglacial and Holocene changes in accumulation at Law Dome, East Antarctica. Annals of Glaciology, 39, 359365.CrossRefGoogle Scholar
White, C.A. 2003. Reconstruction of past communities from faunal remains preserved in the sediment of three saline lakes of the Vestfold Hills, East Antarctica. BSc thesis, University of Tasmania, 138 pp. [Unpublished]Google Scholar
Zwartz, D., Bird, M., Stone, J. & Lambeck, K. 1998. Holocene sea-level change and ice-sheet history in the Vestfold Hills, East Antarctica. Earth and Planetary Science Letters, 155, 131145.CrossRefGoogle Scholar