Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T23:01:09.009Z Has data issue: false hasContentIssue false

Environmental drivers of benthic communities and habitat heterogeneity on an East Antarctic shelf

Published online by Cambridge University Press:  17 October 2016

Alexandra L. Post*
Affiliation:
Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia
Caroline Lavoie
Affiliation:
Department of Geosciences/CESAM, University of Aveiro, Aveiro, 3810-193, Portugal
Eugene W. Domack
Affiliation:
College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
Amy Leventer
Affiliation:
Department of Geology, Colgate University, Hamilton, NY 13346, USA
Amelia Shevenell
Affiliation:
College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
Alexander D. Fraser
Affiliation:
Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Private Bag 80, Hobart, TAS 7001, Australia Institute for Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan

Abstract

This study presents the first analysis of benthic megafauna and habitats from the Sabrina Coast shelf, encompassing a proposed Marine Protected Area. Sea bed imagery indicated an abundant benthic fauna compared to other parts of the Antarctic shelf, dominated by brittle stars, polychaete tubeworms, and a range of other sessile and mobile taxa. The distribution of taxa was related (ρ=0.592, P<0.001) to variations in water depth, latitude, substrate type and phytodetritus. High phytodetritus cover was associated with muddy/sandy sediments and abundant holothurians and amphipods, while harder substrates hosted abundant brachiopods, hard bryozoans, polychaete tubeworms, massive and encrusting sponges, and sea whips. Brittle stars, irregular urchins and anemones were ubiquitous. Variations in substrate largely reflected the distribution of dropstones, creating fine-scale habitat heterogeneity. Several taxa were found only on hard substrates, and their broad regional distribution indicated that the density of dropstones was sufficient for most sessile invertebrates to disperse across the region. The hexactinellid sponge Anoxycalyx joubini and branching hydrocorals exhibited a more restricted distribution, probably related to water depth and limited dispersal capability, respectively. Dropstones were associated with significant increases in taxa diversity, abundance and biological cover, enhancing the overall diversity and biomass of this ecosystem.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Althaus, F., Hill, N., Ferrari, R., Edwards, L., Przeslawski, R., Schönberg, C.H.L., Stuart-Smith, R., Barrett, N., Edgar, G., Colquhoun, J., Tran, M., Jordan, A., Rees, T. & Gowlett-Holmes, K. 2015. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: the CATAMI classification scheme. PLoS ONE, 10, 10.1371/journal.pone.0141039.CrossRefGoogle ScholarPubMed
Barnes, D.K.A. & Conlan, K.E. 2007. Disturbance, colonization and development of Antarctic benthic communities. Philosophical Transactions of the Royal Society, B362, 1138.Google Scholar
Barry, J.P., Grebmeier, J.M., Smith, J. & Dunbar, R.B. 2003. Oceanographic versus sea floor-habitat control of benthic megafaunal communities in the S.W. Ross Sea, Antarctica. Antarctic Research Series, 78, 327354.CrossRefGoogle Scholar
Bett, B.J., Malzone, M.G., Narayanaswamy, B.E. & Wigham, B.D. 2001. Temporal variability in phytodetritus and megabenthic activity at the sea bed in the deep northeast Atlantic. Progress in Oceanography, 50, 10.1016/S0079-6611(01)00066-0.Google Scholar
Buhl-Mortensen, L., Vanreusel, A., Gooday, A.J., Levin, L.A., Priede, I.G., Buhl-Mortensen, P., Gheerardyn, H., King, N.J. & Raes, M. 2010. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Marine Ecology, 31, 10.1111/j.1439-0485.2010.00359.x.CrossRefGoogle Scholar
Cairns, S.D. 2011. Global diversity of the Stylasteridae (Cnidaria: Hydrozoa: Athecatae). PLoS ONE, 6, 10.1371/journal.pone.0021670.Google Scholar
Clarke, K.R. & Gorley, R.N. 2006. PRIMER v6: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
Constable, A.J., Raymond, B., Doust, S., Welsford, D. & Martin-Smith, K. 2010. Elaborating a representative system of marine protected areas in eastern Antarctica, south of 60°S. Document WG-EMM-10/26. Cape Town: Commission for the Conservation of Antarctic Marine Living Resources.Google Scholar
Convey, P., Chown, S.L., Clarke, A., Barnes, D.K.A., Bokhorst, S., Cummings, V., Ducklow, H.W., Frati, F., Green, T.G.A., Gordon, S., Griffiths, H.J., Howard-Williams, C., Huiskes, A.H.L., Laybourn-Parry, J., Lyons, W.B., McMinn, A., Morley, S.A., Peck, L.S., Quesada, A., Robinson, S.A., Schiaparelli, S. & Wall, D.H. 2014. The spatial structure of Antarctic biodiversity. Ecological Monographs, 84, 10.1890/12-2216.1.Google Scholar
Cummings, V., Thrush, S., Schwarz, A.M., Funnel, G. & Budd, R. 2006. Ecology of coastal benthic communities of the northwestern Ross Sea. New Zealand Aquatic Environment and Biodiversity Report No. 6. Wellington: New Zealand Ministry of Fisheries, 67 pp.Google Scholar
Fraser, A.D., Massom, R.A., Michael, K.J., Galton-Fenzi, B.K. & Lieser, J.L. 2011. East Antarctic landfast sea ice distribution and variability, 2000–08. Journal of Climate, 25, 11371156.Google Scholar
Grange, L.J. & Smith, C.R. 2013. Megafaunal communities in rapidly warming fjords along the west Antarctic Peninsula: hotspots of abundance and beta diversity. PLoS ONE, 8, 10.1371/journal.pone.0077917.Google Scholar
Grebmeier, J.M. & Barry, J.P. 2007. Benthic processes in polynyas. In Smith, W.O. Jr & Barber, D.G., eds. Polynyas: windows to the world. San Diego: Elsevier, 363390.Google Scholar
Griffiths, H.J., Barnes, D.K.A. & Linse, K. 2009. Towards a generalized biogeography of the Southern Ocean benthos. Journal of Biogeography, 36, 162177.Google Scholar
Griffiths, H.J., van de Putte, A. & Danis, B. 2014. Data distribution: patterns and implications. In De Broyer, C., Koubbi, P., Griffiths, H., Raymond, B., d’Udekem d’Acox, C., van de Putte, A., Danis, B., David, B., Grant, S., Gutt, J., Held, C., Hosie, G., Huettmann, F., Post, A. & Ropert-Coudert, Y., eds. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research, 1626.Google Scholar
Gutt, J. 2006. Coexistence of macro-zoobenthic species on the Antarctic shelf: an attempt to link ecological theory and results. Deep-Sea Research II - Topical Studies in Oceanography, 53, 10091028.Google Scholar
Gutt, J. 2007. Antarctic macro-zoobenthic communities: a review and an ecological classification. Antarctic Science, 19, 165182.Google Scholar
Gutt, J. & Koltun, V.M. 1995. Sponges of the Lazarev and Weddell Sea, Antarctica: explanations for their patchy occurrence. Antarctic Science, 7, 227234.Google Scholar
Gutt, J. & Starmans, A. 1998. Structure and biodiversity of megabenthos in the Weddell and Lazarev seas (Antarctica): ecological role of physical parameters and biological interactions. Polar Biology, 20, 229247.Google Scholar
Gutt, J. & Piepenburg, D. 2003. Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Marine Ecology Progress Series, 253, 7783.Google Scholar
Gwyther, D.E., Galton-Fenzi, B.K., Hunter, J.R. & Roberts, J.L. 2014. Simulated melt rates for the Totten and Dalton ice shelves. Ocean Science, 10, 10.5194/os-10-267-2014.Google Scholar
Hewitt, J.E., Thrush, S.E., Halliday, J. & Duffy, C. 2005. The importance of small-scale habitat structure for maintaining beta diversity. Ecology, 86, 10.1890/04-1099.Google Scholar
Johnson, R., Strutton, P.G., Wright, S.W., McMinn, A. & Meiners, K.M. 2013. Three improved satellite chlorophyll algorithms for the Southern Ocean. Journal of Geophysical Research - Oceans, 118, 10.1002/jgrc.20270.Google Scholar
Jones, D.O.B., Bett, B.J. & Tyler, P.A. 2007. Depth-related changes to density, diversity and structure of benthic megafaunal assemblages in the Fimbul ice shelf region, Weddell Sea, Antarctica. Polar Biology, 30, 15791592.Google Scholar
Khazendar, A., Schodlok, M.P., Fenty, I., Ligtenberg, S.R.M., Rignot, E. & van den Broeke, M.R. 2013. Observed thinning of Totten Glacier is linked to coastal polynya variability. Nature Communications, 4, 10.1038/ncomms3857.Google Scholar
Koubbi, P., Moteki, M., Duhamel, G., Goarant, A., Hulley, P.A., O’Driscoll, R., Ishimaru, T., Pruvost, P., Tavernier, E. & Hosie, G. 2011. Ecoregionalization of myctophid fish in the Indian sector of the Southern Ocean: results from generalized dissimilarity models. Deep-Sea Research II - Topical Studies in Oceanography, 58, 170180.Google Scholar
Leventer, A., Domack, E., Gulick, S., Huber, B., Orsi, A., Shevenell, A. & Scientific Party. 2014. Sabrina Coast marine record of cryosphere–ocean dynamics. United States Antarctic Program: Hamilton, NY: 467 pp.Google Scholar
Massom, R., Reid, P., Stammerjohn, S., Raymond, B., Fraser, A. & Ushio, S. 2013. Change and variability in East Antarctic sea ice seasonality, 1979/80–2009/10. PLoS ONE, 8, 10.1371/journal.pone.0064756.Google Scholar
Post, A.L., Beaman, R.J., O’Brien, P.E., Eléaume, M. & Riddle, M.J. 2011. Community structure and benthic habitats across the George V Shelf, East Antarctica: trends through space and time. Deep-Sea Research II - Topical Studies in Oceanography, 58, 10.1016/j.dsr2.2010.05.020.Google Scholar
Post, A.L., O’Brien, P.E., Beaman, R.J., Riddle, M.J. & De Santis, L. 2010. Physical controls on deep water coral communities on the George V Land slope, East Antarctica. Antarctic Science, 22, 10.1017/S0954102010000180.Google Scholar
Post, A.L., Meijers, A.J.S., Fraser, A.D., Meiners, K.M., Ayers, J., Bindoff, N.L., Griffiths, H.J., van de Putte, A.P., O’Brien, P.E., Swadling, K.M. & Raymond, B. 2014. Chapter 14. Environmental setting. In De Broyer, C., Koubbi, P., Griffiths, H., Raymond, B., d’Udekem d’Acox, C., van de Putte, A., Danis, B., David, B., Grant, S., Gutt, J., Held, C., Hosie, G., Huettmann, F., Post, A. & Ropert-Coudert, Y., eds. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research, 4664.Google Scholar
Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. 2013. Ice-shelf melting around Antarctica. Science, 341, 10.1126/science.1235798.Google Scholar
Schulz, M., Bergmann, M., von Juterzenka, K. & Soltwedel, T. 2010. Colonisation of hard substrata along a channel system in the deep Greenland Sea. Polar Biology, 33, 10.1007/s00300-010-0825-9.Google Scholar
Smith, C.R., Mincks, S. & DeMaster, D.J. 2006. A synthesis of bentho-pelagic coupling on the Antarctic shelf: food banks, ecosystem inertia and global climate change. Deep-Sea Research II - Topical Studies in Oceanography, 53, 10.1016/j.dsr2.2006.02.001.Google Scholar
Smith, J., O’Brien, P.E., Stark, J.S., Johnstone, G.J. & Riddle, M.J. 2015. Integrating multibeam sonar and underwater video data to map benthic habitats in an East Antarctic nearshore environment. Estuarine, Coastal and Shelf Science, 164, 10.1016/j.ecss.2015.07.036.Google Scholar
Spreen, G., Kaleschke, L. & Heygster, G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research - Oceans, 113, 10.1029/2005JC003384.Google Scholar
Starmans, A., Gutt, J. & Arntz, W.E. 1999. Mega-epibenthic communities in Arctic and Antarctic shelf areas. Marine Biology, 135, 10.1007/s002270050624.Google Scholar
Sumida, P.Y.G., Bernardino, A.F., Stedall, V.P., Glover, A.G. & Smith, C.R. 2008. Temporal changes in benthic megafaunal abundance and composition across the West Antarctic Peninsula shelf: results from video surveys. Deep-Sea Research II - Topical Studies in Oceanography, 55, 10.1016/j.dsr2.2008.06.006.Google Scholar
Thrush, S.F., Hewitt, J.E., Cummings, V.J., Norkko, A. & Chiantore, M. 2010. β-diversity and species accumulation in Antarctic coastal benthos: influence of habitat, distance and productivity on ecological connectivity. PLoS ONE, 5, 10.1371/journal.pone.0011899.Google Scholar
Williams, G.D., Meijers, A.J.S., Poole, A., Mathiot, P., Tamura, T. & Klocker, A. 2011. Late winter oceanography off the Sabrina and BANZARE coast (117–128°E), East Antarctica. Deep-Sea Research II - Topical Studies in Oceanography, 58, 10.1016/j.dsr2.2010.10.035.Google Scholar
Wright, I.C., Graham, I.J., Chang, S.W., Choi, H. & Lee, S.R. 2005. Occurrence and physical setting of ferromanganese nodules beneath the deep Western Boundary Current, southwest Pacific Ocean. New Zealand Journal of Geology and Geophysics, 48, 2741.Google Scholar