Article contents
The environmental basis of ecosystem variability in Antarctica: research in the Latitudinal Gradient Project
Published online by Cambridge University Press: 02 December 2010
Abstract
After a decade of research, New Zealand’s Latitudinal Gradient Project (LGP) now includes primary sites from Cape Hallett (72°S) to the Darwin Glacier (80°S), while additional observations extend the latitudinal transect from 84°S to sub-Antarctic regions. The LGP has been structured around a hypothesis that, in a frigid continent, ice dynamics is the key ecosystem variable. For terrestrial environments, two aspects of ice dynamics appear to underlie much of the observed variability. Firstly, the aridity of the region makes the transition from ice to water a key ecological factor, and secondly, the legacy of ice dynamics dating as far back as the Pliocene is imprinted on biogeography. These factors operate at difference temporal and spatial scales and neither is monotonically related to latitude. Both are also complicated by meso-scale cross gradients of altitude and distance from the sea and micro-scale local variability. Whilst climate does vary on a broad-scale, differences within the northern and central parts of Victoria Land that the LGP has so far examined are insufficient to impose any overarching effect that can overwhelm these more local effects. The result is a multiple-scale patchwork of habitats and communities, more or less replicated across the transect, in which variability at any given latitude generally exceeds variability between latitudes. A lesser quantum of research has been directed at marine ecosystems, but here there is a similar picture of local variability dominating within the Ross Sea, with significant latitude-scale effects only emerging when transects are extended into maritime- and sub-Antarctic regions. It is implicit, but not specifically recognized in the LGP context, that a further confounding effect on the interpretation of ‘transect’ information is the multiple stressor concept that requires a simultaneous analysis of interacting (synergistic or antagonistic) factors and environmental responses. As the LGP continues to extend further south, climate is expected to become more extreme, and water availability may change sufficiently for loss of habitat and species diversity to occur. Here we discuss options for refining the LGP approach to optimize its potential for understanding variability, and the factors underpinning this, in the Ross Sea Sector.
- Type
- Research Article
- Information
- Antarctic Science , Volume 22 , Special Issue 6: The Latitudinal Gradient Project (LGP) , December 2010 , pp. 591 - 602
- Copyright
- Copyright © Antarctic Science Ltd 2010
References
- 26
- Cited by