Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T15:31:54.109Z Has data issue: false hasContentIssue false

Diversity of algae and lichens in biological soil crusts of Ardley and King George islands, Antarctica

Published online by Cambridge University Press:  12 January 2017

Nadine Borchhardt*
Affiliation:
University of Rostock, Institute of Biological Sciences, Applied Ecology & Phycology, Albert-Einstein-Straße 3, D-18059 Rostock, Germany
Ulf Schiefelbein
Affiliation:
Blücherstraße 71, D-18055 Rostock, Germany
Nelida Abarca
Affiliation:
Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Straße 6-8, D-14195 Berlin, Germany
Jens Boy
Affiliation:
Leibniz Universität Hannover, Institute of Soil Sciences, Herrenhäuser Straße 2, D-30419 Hannover, Germany
Tatiana Mikhailyuk
Affiliation:
University of Rostock, Institute of Biological Sciences, Applied Ecology & Phycology, Albert-Einstein-Straße 3, D-18059 Rostock, Germany M.H. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereschenkivska St. 2, Kyiv UA-01001, Ukraine
Harrie J.M. Sipman
Affiliation:
Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Straße 6-8, D-14195 Berlin, Germany
Ulf Karsten
Affiliation:
University of Rostock, Institute of Biological Sciences, Applied Ecology & Phycology, Albert-Einstein-Straße 3, D-18059 Rostock, Germany

Abstract

In the present study the biodiversity of the most abundant phototrophic organisms forming biological soil crust communities were determined, which included green algae, diatoms, yellow-green algae and lichens in samples collected on Ardley and King George islands, Maritime Antarctic. The species were identified by their morphology using light microscopy, and for lichen identification thin layer chromatography as also used to separate specific secondary metabolites. Several sources of information were summarized in an algae catalogue. The results revealed a high species-richness in Antarctic soil crust communities with 127 species in total. Of which, 106 taxa belonged to algae (41 Chlorophyta, nine Streptophyta, 56 Heterokontophyta) and 21 to lichens in 13 genera. Moreover, soil crust communities with different species compositions were determined for the various sampling locations, which might reflect microclimatic and pedological gradients.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belnap, J. 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrological Processes, 20, 10.1002/hyp.6325.CrossRefGoogle Scholar
Belnap, J. & Gillette, D.A. 1998. Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. Journal of Arid Environments, 39, 10.1006/jare.1998.0388.CrossRefGoogle Scholar
Belnap, J., Büdel, B. & Lange, O.L. 2001. Biological soil crusts: characteristics and distribution. In Belnap, J. & Lange, O.L., eds. Biological soil crusts: structure, function, and management. Berlin Heidelberg: Springer, 330.CrossRefGoogle Scholar
Boy, J., Godoy, R., Shibistova, O., Boy, D., McCulloch, R., de la Fuente, A.A., Morales, M.A., Mikutta, R. & Guggenberger, G. 2016. Successional patterns along soil development gradients formed by glacier retreat in the Maritime Antarctic, King George Island. Revista Chilena de Historia Natural, 89, 10.1186/s40693-016-0056-8.CrossRefGoogle Scholar
Broady, P.A. 1996. Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodiversity and Conservation, 5, 10.1007/BF00051981.CrossRefGoogle Scholar
Broady, P.A. & Weinstein, R.N. 1998. Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarctic Science, 10, 10.1017/S0954102098000467.CrossRefGoogle Scholar
Büdel, B. & Colesie, C. 2014. Biological soil crusts. In Cowan, D., ed. Antarctic terrestrial microbiology. Berlin Heidelberg: Springer, 131161.CrossRefGoogle Scholar
Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K.I., Salisch, M., Reisser, W. & Weber, B. 2009. Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microbial Ecology, 57, 10.1007/s00248-008-9449-9.CrossRefGoogle ScholarPubMed
Cannone, N. & Seppelt, R. 2008. A preliminary floristic classification of southern and northern Victoria Land vegetation, Continental Antarctica. Antarctic Science, 20, 10.1017/S0954102008001454.CrossRefGoogle Scholar
Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117143.CrossRefGoogle Scholar
Clarke, K.R. & Green, R.H. 1988. Statistical design and analysis for a ‘biological effect’ study. Marine Ecology Progress Series, 46, 213226.CrossRefGoogle Scholar
Colesie, C., Gommeaux, M., Green, T.G.A. & Büdel, B. 2014. Biological soil crusts in Continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarctic Science, 26, 10.1017/S0954102013000291.CrossRefGoogle Scholar
Darby, D.A., Burckle, L.H. & Clark, D.L. 1974. Airborne dust on the Arctic ice pack, its composition and fallout rate. Earth and Planetary Science Letters, 24, 166172.CrossRefGoogle Scholar
Elster, J., Lukesová, A., Svoboda, J., Kopecky, J. & Kanda, H. 1999. Diversity and abundance of soil algae in the polar desert, Sverdrup Pass, central Ellesmere Island. Polar Record, 35, 10.1017/S0032247400015515.CrossRefGoogle Scholar
Ettl, H. & Gärtner, G. 2014. Syllabus der boden-, luft- und flechtenalgen. Berlin Heidelberg: Springer, 773 pp.CrossRefGoogle Scholar
Evans, R.D. & Belnap, J. 1999. Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology, 80, 150160.CrossRefGoogle Scholar
Evans, R.D. & Lange, O.L. 2001. Biological soil crusts and ecosystem nitrogen and carbon dynamics. In Belnap, J. & Lange, O.L., eds. Biological soil crusts: structure, function, and management. Berlin Heidelberg: Springer, 263279.CrossRefGoogle Scholar
Flechtner, V.R., Johansen, J.R. & Belnap, J. 2008. The biological soil crusts of the San Nicolas Island: enigmatic algae from a geographically isolated ecosystem. Western North American Naturalist, 68, 10.3398/1527-0904-68.4.405.CrossRefGoogle Scholar
Green, T.G.A. & Broady, P.A. 2001. Biological soil crusts of Antarctica. In Belnap, J. & Lange, O.L., eds. Biological soil crusts: structure, function, and management. Berlin Heidelberg: Springer, 133139.CrossRefGoogle Scholar
Green, T.G.A., Seppelt, R.D., Brabyn, L.R., Beard, C., Türk, R. & Lange, O.L. 2015. Flora and vegetation of Cape Hallett and vicinity, northern Victoria Land, Antarctica. Polar Biology, 38, 10.1007/s00300-015-1744-6.CrossRefGoogle Scholar
Harper, K.T. & Belnap, J. 2001. The influence of biological soil crusts on mineral uptake by associated vascular plants. Journal of Arid Environments, 47, 10.1006/jare.2000.0713.CrossRefGoogle Scholar
Kaštovská, K., Stibal, M., Šabacká, M., Černá, B., Šantrůčková, H. & Elster, J. 2007. Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biology, 30, 10.1007/s00300-006-0181-y.CrossRefGoogle Scholar
Kejna, M., Arazny, A. & Sobota, I. 2013. Climatic change on King George Island in the years 1948–2011. Polish Polar Research, 34, 10.2478/popore-2013-0004.CrossRefGoogle Scholar
Kim, G.H., Klochkova, T.A. & Kang, S.H. 2008. Notes on freshwater and terrestrial algae from Ny-Ålesund, Svalbard (high Arctic sea area). Journal of Environmental Biology, 29, 485491.Google ScholarPubMed
Kruskal, J.B. & Wish, M. 1978. Multidimensional scaling. A Sage University Paper series on Quantitative Applications in the Social Sciences, 07-001. Newbury Park, CA: Sage Publications, 96 pp.Google Scholar
Lee, T.F. & Eggleston, P.M. 1989. Airborne algae and cyanobacteria. Grana, 28, 10.1080/00173138909431014.CrossRefGoogle Scholar
Mäusbacher, R. 1991. Die jungquartäre Relief- und Klimageschichte im Bereich der Fildeshalbinsel Süd-Shetland-Inseln. Heidelberg: Heidelberger Geographische Arbeiten, 205 pp.Google Scholar
Orange, A., James, P.W. & White, F.J. 2001. Microchemical methods for the identification of lichens. London: British Lichen Society, 101 pp.Google Scholar
Øvstedal, D.O. & Lewis Smith, R.I. 2001. Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge: Cambridge University Press, 424 pp.Google Scholar
Peat, H.J., Clarke, A. & Convey, P. 2007. Diversity and biogeography of the Antarctic flora. Journal of Biogeography, 34, 10.1111/j.1365-2699.2006.01565.x.CrossRefGoogle Scholar
Pfaff, S., Borchhardt, N., Boy, J., Karsten, U. & Gustavs, L. 2016. Desiccation tolerance and growth-temperature requirements of Coccomyxa (Trebouxiophyceae, Chlorophyta) strains from Antarctic biological soil crusts. Algological Studies, 151/152, 10.1127/algol_stud/2016/0245.CrossRefGoogle Scholar
Sancho, L.G., Schulz, F., Schroeter, B. & Kappen, L. 1999. Bryophyte and lichen flora of South Bay (Livingston Island: South Shetland Islands, Antarctica). Nova Hedwigia, 68, 301337.CrossRefGoogle Scholar
Schulz, K., Mikhailyuk, T., Dressler, M., Leinweber, P. & Karsten, U. 2016. Biological soil crusts from coastal dunes at the Baltic Sea: cyanobacterial and algal biodiversity and related soil properties. Microbial Ecology, 71, 10.1007/s00248-015-0691-7.CrossRefGoogle ScholarPubMed
Seppelt, R.D., Türk, R., Green, T.G.A., Moser, G., Pannewitz, S., Sancho, L.G. & Schroeter, B. 2010. Lichen and moss communities of Botany Bay, Granite Harbour, Ross Sea, Antarctica. Antarctic Science, 22, 10.1017/S0954102010000568.CrossRefGoogle Scholar
Souffreau, C., Vanormelingen, P., van de Vijver, B., Isheva, T., Verleyen, E., Sabbe, K. & Vyverman, W. 2013. Molecular evidence for distinct Antarctic lineages in the cosmopolitan terrestrial diatoms Pinnularia borealis and Hantzschia amphioxys . Protist, 164, 10.1016/j.protis.2012.04.001.CrossRefGoogle ScholarPubMed
Starr, R.C. & Zeikus, J.A. 1993. UTEX – the culture collection of algae at the University of Texas at Austin. 1993 list of cultures. Journal of Phycology, 29(Sup.), 1106.CrossRefGoogle Scholar
Watcham, E.P., Bentley, M.J., Hodgson, D.A., Roberts, S.J., Fretwell, P.T., Lloyd, J.M., Larter, R.D., Whitehouse, P.L., Leng, M.J., Monien, P. & Moreton, S.G. 2011. A new Holocene relative sea level curve for the South Shetland Islands, Antarctica. Quaternary Science Reviews, 30, 10.1016/j.quascirev.2011.07.021.CrossRefGoogle Scholar
Weber, B., Büdel, B. & Belnap, B. 2016. Biological soil crusts: an organizing principle in drylands. Berlin Heidelberg: Springer, 539 pp.CrossRefGoogle Scholar
Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon, 21, 213251.CrossRefGoogle Scholar
Williams, L., Borchhardt, N., Colesie, C., Baum, C., Komsic-Buchmann, K., Rippin, M., Becker, B., Karsten, U. & Büdel, B. 2016. Biological soil crusts of Arctic Svalbard and of Livingston Island, Antarctica. Polar Biology, 10.1007/s00300-016-1967-1.Google Scholar
Wu, Y.M., Rao, B.Q., Wu, P.P., Liu, Y.D., Li, G.B. & Li, D.H. 2013. Development of artificially induced biological soil crusts in fields and their effects on top soil. Plant and Soil, 370, 10.1007/s11104-013-1611-6.CrossRefGoogle Scholar
Zidarova, R.P. 2008. Algae from Livingston Island (S Shetland Islands): a checklist. Phytologia Balcanica, 14, 1935.Google Scholar
Supplementary material: PDF

Borchhardt supplementary material

Table S1

Download Borchhardt supplementary material(PDF)
PDF 1.9 MB