Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T18:50:16.559Z Has data issue: false hasContentIssue false

Deep dehydration of Umbilicaria aprina thalli observed by proton NMR and sorption isotherm

Published online by Cambridge University Press:  09 June 2008

H. Harańczyk*
Affiliation:
Institute of Physics, Jagiellonian University, Cracow, Poland
M. Bacior
Affiliation:
Institute of Physics, Jagiellonian University, Cracow, Poland
M.A. Olech
Affiliation:
Institute of Botany, Jagiellonian University, Cracow, Poland Department of Antarctic Biology, Polish Academy of Sciences, Warsaw, Poland

Abstract

The initial stages of Umbilicaria aprina Nyl. hydration (starting from the hydration level Δm/m0 = 0.048 ± 0.004) were observed using hydration kinetics, sorption isotherm and proton NMR. The thalli were hydrated from gaseous phase. The total saturation hydration level obtained at the relative humidity p/p0 = 100% was Δm/m0 = 0.848 ± 0.009. The hydration courses revealed i) a fraction of very tightly bound water (Δm/m0 = 0.054 ± 0.011, short hydration time constant, thyd), ii) a fraction of tightly bound water [Δm/m0 = 0.051 ± 0.038, thyd = (4.7 ± 2.6) h], and iii) a loosely bound water pool [thyd = (31.0 ± 1.9) h] for higher values of target humidity. The sorption isotherm of U. aprina was fitted well using Dent model. The relative mass of water saturating primary binding sites was ΔM/m0 = 0.054, which is close to the water fractions. Proton FIDs detected (i + ii) the immobilized tightly bound water fraction, L1, and iii) the mobile, loosely bound water pool L2. The hydration dependence of the proton liquid signal suggests the presence of a significant contribution from a water soluble solid fraction in the thallus. Sorption isotherm fitted to NMR data showed the absence of ‘sealed’ water fraction trapped in pores of the thallus.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abragam, A. 1961. The principles of nuclear magnetism. Oxford: Clarendon Press, 597 pp.Google Scholar
Brunauer, S., Emmett, P.H. & Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309319.CrossRefGoogle Scholar
Crowe, L.M. 2002. Lessons from nature: the role of sugars in anhydrobiosis. Comparative Biochemistry and Physiology, A131, 505513.CrossRefGoogle Scholar
Dent, R.W. 1977. A multilayer theory for gas sorption. Part I: Sorption of a single gas. Textile Research Journal, 47, 145152.CrossRefGoogle Scholar
Derbyshire, W., Van Den Bosch, M., Van Dusschoten, D., Macnaughtan, W., Farhat, I.A., Hemminga, M.A. & Mitchell, J.R. 2004. Fitting of the beat pattern observed in NMR free-induction decay signals of concentrated carbohydrate-water solutions. Journal of Magnetic Resonance, 168, 278283.CrossRefGoogle ScholarPubMed
Gaff, D.F. 1977. Desiccation tolerant vascular plants of Southern Africa. Oecologia, 31, 95109.CrossRefGoogle ScholarPubMed
Gordon, M. & Taylor, J.S. 1952. Ideal copolymers and the second order transitions of synthetic rubbers 1. Non-crystalline copolymers. Journal of Applied Chemistry, 2, 493500.CrossRefGoogle Scholar
Hamada, N., Okazaki, K. & Shinozaki, M. 1994. Accumulation of monosaccharides in lichen mycobionts cultured under osmotic conditions. The Bryologist, 97, 176179.CrossRefGoogle Scholar
Harańczyk, H. 2003. On water in extremely dry biological systems. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego, 276 pp.Google Scholar
Harańczyk, H., Gaździński, S. & Olech, M.A. 1998. The initial stages of lichen hydration as observed by proton magnetic relaxation. New Phytologist, 138, 191202.CrossRefGoogle ScholarPubMed
Harańczyk, H., Gaździński, S. & Olech, M.A. 2000a. Freezing protection mechanism in Cladonia mitis as observed by proton magnetic relaxation. New Aspects in Cryptogamic Research, Contribution in Honour of Ludger Kappen. Bibliotheca Lichenologica, 75, 265274.Google Scholar
Harańczyk, H., Gaździński, S. & Olech, M.A. 2000b. Low temperature effect on the thallus of Cladonia mitis as observed by proton spin-lattice relaxation. Molecular Physics Reports, 29, 135138.Google Scholar
Harańczyk, H., Grandjean, J. & Olech, M. 2003a. Freezing of water bound in lichen thallus as observed by 1H NMR. I. Freezing of loosely bound water in Cladonia mitis at different hydration levels. Colloids and Surfaces B: Biointerfaces, 28, 239249.CrossRefGoogle Scholar
Harańczyk, H., Grandjean, J., Olech, M. & Michalik, M. 2003b. Freezing of water bound in lichen thallus as observed by 1H NMR. II. Freezing protection mechanisms in a cosmopolitan lichen Cladonia mitis and in Antarctic lichen species at different hydration levels. Colloids and Surfaces B: Biointerfaces, 28, 251260.CrossRefGoogle Scholar
Harańczyk, H., Leja, A. & Strzałka, K. 2006a. The effect of water accessible paramagnetic ions on subcellular structures formed in developing wheat photosynthetic membranes as observed by NMR and by sorption isotherm. Acta Physica Polonica, A109, 389398.CrossRefGoogle Scholar
Harańczyk, H., Pietrzyk, A., Leja, A. & Olech, M. 2006b. Bound water structure on the surfaces of Usnea antarctica as observed by NMR and sorption isotherm. Acta Physica Polonica, A109, 411416.CrossRefGoogle Scholar
Harańczyk, H., Strzałka, K., Jasiński, G. & Mosna-Bojarska, K. 1996. The initial stages of wheat (Triticum aestivum L.) seed imbibition as observed by proton nuclear magnetic relaxation. Colloids and Surfaces, A115, 4754.CrossRefGoogle Scholar
Harańczyk, H., Węglarz, W.P. & Sojka, S. 1999. The investigation of hydration processes in horse chestnut (Aesculus hippocastanum L.) and pine (Pinus silvestri, L.) bark and bast using proton magnetic relaxation. Holzforschung, 53, 299310.CrossRefGoogle Scholar
Kappen, L. 1985. Water relations and net photosynthesis of Usnea. A comparison between Usnea fasciata (maritime Antarctic) and Usnea sulphurea (continental Antarctic). In Brown, D.H., eds. Lichen physiology and cell biology. New York: Plenum Press, 4156.CrossRefGoogle Scholar
Kappen, L. 1989. Field measurements of carbon dioxide exchange of the Antarctic lichen Usnea sphacelata in the frozen state. Antarctic Science, 1, 3134.CrossRefGoogle Scholar
Kappen, L. 1993. Plant activity under snow and ice, with particular reference to lichens. Arctic, 46, 297302.CrossRefGoogle Scholar
Kappen, L. & Breuer, M. 1991. Ecological and physiological investigations in continental Antarctic cryptogams. II. Moisture relations and photosynthesis of lichens near Casey Station, Wilkes Land. Antarctic Science, 3, 273278.CrossRefGoogle Scholar
Kappen, L., Bölter, M. & Kühn, A. 1986. Field measurements of net photosynthesis of lichens in the Antarctic. Polar Biology, 5, 255258.CrossRefGoogle Scholar
Kappen, L., Schroeter, B., Hestmark, G. & Winkler, J.B. 1996. Field measurements of photosynthesis of Umbilicarious lichens in winter. Botanica Acta, 109, 292298.CrossRefGoogle Scholar
Kieft, T.L. 1988. Ice nucleation activity in lichens. Applied and Environmental Microbiology, 54, 16781681.CrossRefGoogle ScholarPubMed
Kieft, T.L. & Ahmadjian, V. 1989. Biological ice nucleation activity in lichen mycobionts and photobionts. Lichenologist, 21, 355362.CrossRefGoogle Scholar
Kieft, T.L. & Ruscetti, T. 1990. Characterization of biological ice nuclei from a lichen. Journal of Bacteriology, 172, 35193523.CrossRefGoogle ScholarPubMed
Melick, D.R. & Seppelt, R.D. 1994. The effect of hydration on carbohydrate levels, pigment content and freezing point of Umbilicaria decussata at a continental Antarctic locality. Cryptogamic Botany, 4, 212271.Google Scholar
Nash III, T.H., Kappen, L., Loesch, R., Larson, D.W. & Matthes-Sears, U. 1987. Cold resistance of lichens with Trentepohlia- or Trebouxia-photobionts from the North American west coast. Flora, 179, 241251.CrossRefGoogle Scholar
Pintar, M.M. 1991. Some considerations of the round table subject. Magnetic Resonance Imaging, 9, 753754.CrossRefGoogle Scholar
Robinson, H.H., Sharp, R.R. & Yocum, C.F. 1980. Effect of manganese on the nuclear magnetic relaxivity of water protons in chloroplast membranes. Biochemical and Biophysical Research Communication, 93, 755761.CrossRefGoogle Scholar
Robinson, H.H., Sharp, R.R. & Yocum, C.F. 1981. Topology of NH2OH-induced Mn (II) release from chloroplast thylakoid membranes. Biochimica et Biophysica Acta, 636, 144152.CrossRefGoogle ScholarPubMed
Sancho, L.G., Valladares, F., Schroeter, B. & Kappen, L. 2000. Ecophysiology of Antarctic versus temperate populations of a bipolar lichen: the key role of the photosynthetic partner. In Davidson, W., Howard-Williams, C. & Broady, P., eds. Antarctic ecosystems: models for wider ecological understanding. Christchurch: The Caxton Press, 190194.Google Scholar
Schroeter, B., Green, T.G.A., Kappen, L. & Seppelt, R.D. 1994. Carbon dioxide exchange at subzero temperatures. Field measurements on Umbilicaria aprina in Antarctica. Cryptogamic Botany, 4, 233241.Google Scholar
Schroeter, B. & Scheidegger, C.H. 1995. Water relations in lichens at subzero temperatures: structural changes and carbon dioxide exchange in the lichen Umbilicaria aprina from continental Antartctica. New Phytologist, 131, 273285.CrossRefGoogle Scholar
Timur, A. 1969. Pulsed nuclear magnetic resonance studies of porosity, movable fluid permeability of sandstones. Journal of Petroleum Technology, 21, 775786.CrossRefGoogle Scholar
Valladares, F., Sancho, L.G. & Ascaso, C. 1998. Water storage in the lichen family Umbilicariacae. Botanica Acta, 111, 99107.CrossRefGoogle Scholar
Węglarz, W. & Harańczyk, H. 2000. Two-dimensional analysis of the nuclear relaxation function in the time domain: the program CracSpin. Journal of Physics D: Applied Physics, 33, 19091920.CrossRefGoogle Scholar
Wydrzyński, T.J., Marks, S.B., Schmidt, P.G., Govindjee, G. & Gutowsky, H.S. 1978. Nuclear magnetic relaxation by the manganese in aqueous suspensions of chloroplasts. Biochemistry, 17, 21552162.CrossRefGoogle ScholarPubMed