Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T00:14:02.135Z Has data issue: false hasContentIssue false

Dating late Cenozoic erosional surfaces in Victoria Land, Antarctica, with cosmogenic neon in pyroxenes

Published online by Cambridge University Press:  27 November 2007

P. Oberholzer*
Affiliation:
Institute of Isotope Geology and Mineral Resources, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland
C. Baroni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, 56126 Pisa, Italy
M.C. Salvatore
Affiliation:
Dipartimento di Scienze della Terra, Università di Roma “La Sapienza”, Piazzale A. Moro 5, 00185 Roma, Italy
H. Baur
Affiliation:
Institute of Isotope Geology and Mineral Resources, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland
R. Wieler
Affiliation:
Institute of Isotope Geology and Mineral Resources, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland
*
*current address: Baugeologie und Geo-Bau-Labor Chur, Bolettastrasse 1, 7000 Chur, Switzerland[email protected]

Abstract

We present 21Ne exposure ages of erosional glaciogenic rock surfaces on nunataks in northern Victoria Land, Antarctica: i) in the Prince Albert Mountains and ii) near Mesa Range. These nunataks are located directly at the margin of the polar plateau and therefore provide an immediate record of ice volume changes of the East Antarctic Ice Sheet, not biased by ice shelf grounding or narrow valley sections downstream the outlet glaciers. The sampling locations overlook the present ice surface by less than 200 m, but were last covered by ice 3.5 Ma bp (minimum age, not corrected for erosion). This strongly indicates that the ice sheet has not been substantially thicker than today since at least the early Pliocene, which supports the hypothesis of a stable East Antarctic Ice Sheet. First absolute ages are reported for the alpine topography above the erosive trimline that typically marks the upper limit of glacial activity in northern Victoria Land. Unexpectedly low nuclide concentrations suggest that erosion rates on the alpine topography are considerably higher due to the steep slopes than those affecting flat erosional surfaces carrying Antarctic tors.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armienti, P. & Baroni, C. 1999. Cenozoic climatic change in Antarctica recorded by volcanic activity and landscape evolution. Geology, 27, 617620.2.3.CO;2>CrossRefGoogle Scholar
Baroni, C., Biasini, A., Bondesan, A., Denton, G.H., Frezzotti, M., Grigioni, P., Meneghel, M., Orombelli, G., Salvatore, M.C., Della Vedova, A.M. & Vittuari, L. 2005a. Mount Melbourne Quadrangle, Victoria Land, Antarctica 1:250,000 (Antarctic Geomorphological and Glaciological Map Series). In Haeberli, W., Zemp, M., Hoelzle, M. & Frauenfelder, R., eds. Fluctuations of glaciers, 1995–2000 (Vol. VIII). Zürich: IAHS (ICSI)-UNEP-UNESCO, 3840.Google Scholar
Baroni, C., Biasini, A., Cimbelli, A., Frezzotti, M., Orombelli, G., Salvatore, M.C., Tabacco, I. & Vittuari, L. 2005b. Relief Inlet Quadrangle, Victoria Land, Antarctica 1:250,000 (Antarctic Geomorphological and Glaciological Map Series). In Haeberli, W., Zemp, M., Hoelzle, M. & Frauenfelder, R., eds. Fluctuations of glaciers 1995–2000 (Vol. VIII). Zürich: IAHS (ICSI)-UNEP-UNESCO, 4344.Google Scholar
Baroni, C., Frezzotti, M., Salvatore, M.C., Meneghel, M., Tabacco, I.E., Vittuari, L., Bondesan, A., Biasini, A., Cimbelli, A. & Orombelli, G. 2005c. Antarctic geomorphological and glaciological 1:250,000 map series. Mount Murchison Quadrangle (northern Victoria Land). Explanatory notes. (with geomorphological map at the scale of 1:250,000). Annals of Glaciology, 39, 256264.CrossRefGoogle Scholar
Baroni, C., Noti, V., Ciccacci, S., Righini, G. & Salvatore, M.C. 2005d. Fluvial origin of the valley system in northern Victoria Land (Antarctica) from quantitative geomorphic analysis. Geological Society of America Bulletin, 117, 212228.CrossRefGoogle Scholar
Baur, H. 1999. A noble-gas mass spectrometer compressor source with two orders of magnitude improvement in sensitivity. EOS Transactions AGU, 80, F1118Google Scholar
British Antarctic Survey. 2002. Antarctic digital database, version 4.0. Cambridge: Scientific Committee on Antarctic Research.Google Scholar
Bruno, L.A., Baur, H., Graf, T., Schlüchter, C., Signer, P. & Wieler, R. 1997. Dating of Sirius Group tillites in the Antarctic Dry Valleys with cosmogenic 3He and 21Ne. Earth and Planetary Science Letters, 147, 3754.CrossRefGoogle Scholar
Denton, G.H. & Hughes, T.J. 2000. Reconstruction of the Ross Ice drainage system, Antarctica, at the Last Glacial Maximum. Geografiska Annaler, 82A, 143166.CrossRefGoogle Scholar
Denton, G.H., Prentice, M.L. & Burckle, L.H. 1991. Cainozoic history of the Antarctic ice sheet. In Tingey, R.J., ed. The geology of Antarctica. Oxford: Oxford University Press, 365433.Google Scholar
Denton, G.H., Bockheim, J.G., Wilson, S.C. & Schlüchter, C. 1986. Late Cenozoic history of Rennick Glacier and Talos Dome, northern Victoria Land, Antarctica. Antarctic Research Series, 46, 339375.CrossRefGoogle Scholar
Eberhardt, P., Eugster, O. & Marti, K. 1965. A redetermination of the isotopic composition of atmospheric neon. Zeitschrift für Naturforschung, 20, 623624.CrossRefGoogle Scholar
Giorgetti, G. & Baroni, C. 2007. High-resolution analysis of silica and sulphate-rich rock varnishes from Victoria Land (Antarctica). European Journal of Mineralogy, 19, 381389.CrossRefGoogle Scholar
Harrington, H.J. 1958. The nomenclature of rock units in the Ross Sea region. Nature, 182, 290.CrossRefGoogle Scholar
Isbell, J.L. 1999. The Kukri Erosion Surface; a reassessment of its relationship to rocks of the beacon supergroup in the central Transantarctic Mountains, Antarctica. Antarctic Science, 11, 228238.CrossRefGoogle Scholar
Jamieson, S.S.R., Hulton, N.R.J., Sugden, D.E., Payne, A.J. & Taylor, J. 2005. Cenozoic landscape evolution of the Lambert Basin, East Antarctica: the relative role of rivers and ice sheets. Global and Planetary Change, 45, 3549.CrossRefGoogle Scholar
Marchant, D.R., Denton, G.H., Sugden, D.E. & Swisher, C.C. 1993. Miocene glacial stratigraphy and landscape evolution of the western Asgard Range, Antarctica. Geografiska Annaler, 75A, 303330.CrossRefGoogle Scholar
Marchant, D.R., Denton, G.H., Bockheim, J.G., Wilson, S.C. & Kerr, A.R. 1994. Quaternary changes in level of the upper Taylor Glacier, Antarctica: implications for palaeoclimate and East Antarctic Ice Sheet dynamics. Boreas, 23, 2943.CrossRefGoogle Scholar
Masarik, J. & Wieler, R. 2003. Production rates of cosmogenic nuclides in boulders. Earth and Planetary Science Letters, 216, 201208.CrossRefGoogle Scholar
McKelvey, B.C., Webb, P.-N. & Kohn, B.P. 1977. Stratigraphy of the Taylor and Lower Victoria groups (Beacon Supergroup) between the Mackay and Boomerang Range, Antarctica. New Zealand Journal of Geology and Geophysics, 20, 813863.CrossRefGoogle Scholar
Niedermann, S. 2000. The 21Ne production rate in quartz revisited. Earth and Planetary Science Letters, 183, 361364.CrossRefGoogle Scholar
Niedermann, S. 2002. Cosmic-ray produced noble gases in terrestrial rocks: dating tools for surface processes. In Porcelli, D., Ballentine, C.J. & Wieler, R., eds. Noble gases in geochemistry and cosmochemistry. Washington, DC: Mineralogical Society of America, 731784.CrossRefGoogle Scholar
Niedermann, S., Schaefer, J.M., Wieler, R. & Naumann, R. 2007. The production rate of cosmogenic Ar-38 from calcium in terrestrial pyroxene. Earth and Planetary Science Letters, 257, 596608.CrossRefGoogle Scholar
Nishiizumi, K., Kohl, C.P., Arnold, J.R., Klein, J., Fink, D. & Middleton, R. 1991. Cosmic ray produced 10Be and 26Al in Antarctic rocks: exposure and erosion history. Earth and Planetary Science Letters, 104, 440454.CrossRefGoogle Scholar
Oberholzer, P., Baroni, C., Schaefer, J.M., Orombelli, G., Ivy-Ochs, S., Kubik, P.W., Baur, H. & Wieler, R. 2003. Limited Pliocene/Pleistocene glaciation in Deep Freeze Range, northern Victoria Land, Antarctica, derived from in situ cosmogenic nuclides. Antarctic Science, 15, 493502.CrossRefGoogle Scholar
Orombelli, G. 1989. Terra Nova Bay: a geographic overview. Memorie della Società Geologica Italiana, 32, 6975.Google Scholar
Orombelli, G., Baroni, C. & Denton, G.H. 1991. Late Cenozoic glacial history of the Terra Nova Bay region, northern Victoria Land, Antarctica. Geografia Fisica e Dinamica Quaternaria, 13, 139163.Google Scholar
Pocknall, D.T., Chinn, T.J., Skyes, R. & Skinner, D.N.B. 1994. Geology of the Convoy Range area, southern Victoria Land, Antarctica. Lower Hutt, New Zealand: Institute of Geological and Nuclear Sciences, 36 pp.Google Scholar
Schäfer, J., Baur, H., Denton, G.H., Ivy-Ochs, S., Marchant, D.R., Schlüchter, C. & Wieler, R. 2000. The oldest ice on earth in Beacon Valley, Antarctica: new evidence from surface exposure dating. Earth and Planetary Science Letters, 179, 9199.CrossRefGoogle Scholar
Schäfer, J.M., Ivy-Ochs, S., Wieler, R., Leya, I., Baur, H., Denton, G.H. & Schlüchter, C. 1999. Cosmogenic noble gas studies in the oldest landscape on Earth: surface exposure ages of the Dry Valleys, Antarctica. Earth and Planetary Science Letters, 167, 215226.CrossRefGoogle Scholar
Selby, M.J. 1972. Antarctic tors. Zeitschrift für Geomorphologie, 13, 7386.Google Scholar
Stone, J.O. 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research, 105, 23 753–23 759.CrossRefGoogle Scholar
Sugden, D.E. & Denton, G.H. 2004. Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: onshore to offshore synthesis. Geological Society of America Bulletin, 116, 840857.CrossRefGoogle Scholar
Van Der Wateren, F.M., Dunai, T.J., Balen, R.T.V., Klas, W., Verbers, A.L.L.M., Passchier, S. & Herpers, U. 1999. Contrasting Neogene denudation histories of different structural regions in the Transantarctic Mountains rift flank constrained by cosmogenic isotope measurements. Global and Planetary Change, 23, 145172.CrossRefGoogle Scholar
Webb, P.-N. & Harwood, D.M. 1991. Late Cenozoic glacial history of the Ross Embayment, Antarctica. Quaternary Science Reviews, 10, 215223.CrossRefGoogle Scholar
Webb, P.N., Harwood, D.M., Mckelvey, B.C., Mercer, J.H. & Stott, L.D. 1984. Cenozoic marine sedimentation and ice volume variation on the East Antarctic craton. Geology, 12, 287291.2.0.CO;2>CrossRefGoogle Scholar