Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-17T15:11:44.208Z Has data issue: false hasContentIssue false

The biology and ecology of the liverwort Cephaloziella varians in Antarctica

Published online by Cambridge University Press:  24 November 2009

K.K. Newsham*
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK

Abstract

The biology and ecology of Cephaloziella varians, the most widespread and abundant liverwort in Antarctica, are reviewed. A description of the species is given, together with information on its geographical distribution, reproduction, habitats, associated organisms and responses to environmental stresses. Characteristics of its photosynthetic physiology are also presented, including data on oxygen evolution rates and chlorophyll a fluorescence parameters. Substratum and tissue chemistry, water relations and pigments are discussed, along with recent data demonstrating that the dark pigment in the apical leaves of C. varians is the anthocyanidin riccionidin A. Recent studies showing that the ericoid mycorrhizal symbiont Rhizoscyphus ericae is present in the tissues of the plant at a wide range of locations in the maritime and sub-Antarctic are also described. It is evident, from the literature reviewed, that C. varians has several adaptations that enable it to survive in the Antarctic biome, explaining its survival at higher latitudes than any other hepatic. The species’ major adaptations include the synthesis of riccionidin A in apical leaves, enabling efficient heat absorption and protection from photoinhibition, and the presence in stems and rhizoids of fungal hyphae, which are potentially beneficial to the hepatic’s nutrition and possibly also synthesize cryoprotectants.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, S.E. 1989. Chemical analysis of ecological materials. Oxford: Blackwell Scientific Publications, 368 pp.Google Scholar
Bednarek-Ochyra, H., Váňa, J., Ochyra, J.V.R.Smith, R.I.L. 2000. The liverwort flora of Antarctica. Cracow: Polish Academy of Sciences, Institute of Botany, 236 pp.Google Scholar
Bokhorst, S., Huiskes, A., Convey, P.Aerts, R. 2007. External nutrient inputs into terrestrial ecosystems of the Falkland Islands and the maritime Antarctic region. Polar Biology, 30, 13151321.CrossRefGoogle Scholar
Bridge, P.D., Newsham, K.K.Denton, G.J. 2008. Snow mould caused by a Pythium sp.: a potential vascular plant pathogen in the maritime Antarctic. Plant Pathology, 57, 10661072.CrossRefGoogle Scholar
Broady, P., Given, D., Greenfield, L.Thompson, K. 1987. The biota and environment of fumaroles on Mt Melbourne, Northern Victoria Land. Polar Biology, 7, 97113.CrossRefGoogle Scholar
Chambers, S.M., Williams, P.G., Seppelt, R.D.Cairney, J.W.G. 1999. Molecular identification of Hymenocyphus sp. from rhizoids of the leafy liverwort Cephaloziella exiliflora in Australia and Antarctica. Mycological Research, 103, 286288.CrossRefGoogle Scholar
Christie, A., Pocock, K., Lewis, D.H.Duckett, J.G. 1985. A comparison between the carbohydrates of axenically cultured hepatics and of those collected from the field. Journal of Bryology, 13, 417422.CrossRefGoogle Scholar
Convey, P.Smith, R.I.L. 2006. Geothermal bryophyte habitats in the South Sandwich Islands, maritime Antarctic. Journal of Vegetation Science, 17, 529538.CrossRefGoogle Scholar
Convey, P., Smith, R.I.L., Hodgson, D.A.Peat, H.J. 2000. The flora of the South Sandwich Islands, with particular reference to the influence of geothermal heating. Journal of Biogeography, 27, 12791295.CrossRefGoogle Scholar
Davey, M.C.Rothery, P. 1997. Interspecific variation in respiratory and photosynthetic parameters in Antarctic bryophytes. New Phytologist, 137, 231240.CrossRefGoogle ScholarPubMed
Davis, E.C. 2004. A molecular phylogeny of leafy liverworts (Jungermanniidae: Marchantiophyta). Monographs in Systematic Botany, 98, 6186.Google Scholar
Davis, R.C. 1981. Structure and function of two Antarctic terrestrial moss communities. Ecological Monographs, 51, 125143.CrossRefGoogle Scholar
Davis, R.C. 1986. Environmental factors influencing decomposition rates in two Antarctic moss communities. Polar Biology, 5, 95103.CrossRefGoogle Scholar
Duddington, C.L., Wyborn, C.H.E.Smith, R.I.L. 1973. Predacious fungi from the Antarctic. British Antarctic Survey Bulletin, No. 35, 8790.Google Scholar
Forrest, L.L., Davis, E.C., Long, D.G., Crandall-Stotler, B.J., Clark, A.Hollingsworth, M.L. 2006. Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analyses. The Bryologist, 109, 303334.CrossRefGoogle Scholar
Fulford, M.H. 1976. Manual of the leafy Hepaticae of Latin America. Part IV. Memoirs of the New York Botanical Garden, 11, 393535.Google Scholar
Gottsche, C.M. 1890. Die Lebermoose Süd-Georgiens. In Neumayer, G., ed. Die Internationale Polarforschung 1882–83. Die Deutschen Expeditionen und ihre Ergebnisse, 2. Berlin: Asher, 449454.Google Scholar
Grolle, R. 1972. The hepatics of the South Sandwich Islands and South Georgia. British Antarctic Survey Bulletin , No. 28, 8395.Google Scholar
Holdgate, M.W., Allen, S.E.Chambers, M.J.G. 1967. A preliminary investigation of the soils of Signy Island, South Orkney Islands. British Antarctic Survey Bulletin , No. 12, 5371.Google Scholar
Hughes, K.A., Lawley, B.Newsham, K.K. 2003. Solar radiation inhibits the growth of Antarctic terrestrial fungi. Applied and Environmental Microbiology, 69, 14881491.CrossRefGoogle ScholarPubMed
Jumpponen, A., Newsham, K.K.Neises, D.J. 2003. Filamentous ascomycetes inhabiting the rhizoid environment of the liverwort Cephaloziella varians in Antarctica as assessed by direct PCR and cloning. Mycologia, 95, 457466.CrossRefGoogle ScholarPubMed
Konstantinova, N.A.Potemkin, A.D. 1996. Liverworts of the Russian Arctic: an annotated check-list and bibliography. Arctoa, 6, 125150.CrossRefGoogle Scholar
Kunz, S., Burkhardt, G.Becker, H. 1994. Riccionidins A and B, anthocyanidins from the cell walls of the liverwort Ricciocarpos natans. Phytochemistry, 35, 233235.CrossRefGoogle Scholar
Longton, R.E. 1974. Microclimate and biomass in communities of the Bryum association on Ross Island, continental Antarctica. The Bryologist, 77, 109127.CrossRefGoogle Scholar
Longton, R.E.Holdgate, M.W. 1967. Temperature relationships of Antarctic vegetation. Philosophical Transactions of the Royal Society of London, B252, 237250.Google Scholar
Longton, R.E.Holdgate, M.W. 1979. The South Sandwich Islands. 4. Botany. British Antarctic Survey Science Report , No. 94, 53 pp.Google Scholar
Melick, D.R.Seppelt, R.D. 1992. Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles. Antarctic Science, 4, 399404.CrossRefGoogle Scholar
Montiel, P.O. 2000. Soluble carbohydrates (trehalose in particular) and cryoprotection in polar biota. Cryoletters, 21, 8390.Google ScholarPubMed
Newsham, K.K., Maslen, N.R.McInnes, S.J. 2006. Survival of Antarctic soil metazoans at -80°C for six years. Cryoletters, 27, 291294.Google Scholar
Newsham, K.K., Geissler, P.A., Nicolson, M.J., Peat, H.J.Lewis-Smith, R.I. 2005. Sequential reduction of UV-B radiation in the field alters the pigmentation of an Antarctic leafy liverwort. Environmental and Experimental Botany, 54, 2232.CrossRefGoogle Scholar
Newsham, K.K., Hodgson, D.A., Murray, A.W.A., Peat, H.J.Smith, R.I.L. 2002. Response of two Antarctic bryophytes to stratospheric ozone depletion. Global Change Biology, 8, 972983.CrossRefGoogle Scholar
Newton, M.E. 1980. Chromosome studies in some Antarctic and sub-Antarctic bryophytes. British Antarctic Survey Bulletin , No. 50, 7786.Google Scholar
Ochyra, R.Váňa, J. 1989a. The hepatics of King George Island, South Shetland Islands, Antarctica, with particular reference to the Admiralty Bay region. Polish Polar Research, 10, 183210.Google Scholar
Ochyra, R.Váňa, J. 1989b. The hepatics reported from the Antarctic and an outline of their phytogeography. Polish Polar Research, 10, 211229.Google Scholar
Ochyra, R., Lewis-Smith, R.I.Bednarek-Ochyra, H. 2008. The illustrated moss flora of Antarctica. Cambridge: Cambridge University Press, 685 pp.Google Scholar
Ochyra, R., Przywara, L.Kuta, E. 1982. Karyological studies on some Antarctic liverworts. Journal of Bryology, 12, 259263.CrossRefGoogle Scholar
Post, A.Vesk, M. 1992. Photosynthesis, pigments and chloroplast ultrastructure of an Antarctic liverwort from sun-exposed and shaded sites. Canadian Journal of Botany, 70, 22592264.CrossRefGoogle Scholar
Rastorfer, J.R. 1972. Comparative physiology of four West Antarctic mosses. Antarctic Research Series, 20, 143161.CrossRefGoogle Scholar
Roser, D.J., Melick, D.R., Ling, H.U.Seppelt, R.D. 1992. Polyol and sugar content of terrestrial plants from continental Antarctica. Antarctic Science, 4, 413420.CrossRefGoogle Scholar
Schljakov, R.N. 1979. Pechenochnye mkhi severa SSSR. Vyp. 2. Pechenochniki: Gerbertovye – Geokaliksovye. Leningrad: Leningradskoe Otdelenie, 191 pp.Google Scholar
Schuster, R.M. 1980. New combinations and new taxa of Hepaticae, I. Phytologia, 45, 415437.CrossRefGoogle Scholar
Schuster, R.M.Damsholt, K. 1974. The Hepaticae of West Greenland from ca. 66°N to 72°N. Meddelelser om Grønland, 199, 1373.Google Scholar
Seppelt, R.D. 1983. Cephaloziella exiliflora (Tayl.) Steph. from the Windmill Islands, continental Antarctica. Lindbergia, 9, 2728.Google Scholar
Seppelt, R.D.Green, T.G.A. 1998. A bryophyte flora for Southern Victoria Land, Antarctica. New Zealand Journal of Botany, 36, 617635.CrossRefGoogle Scholar
Smith, R.I.L. 1972. Vegetation of the South Orkney Islands with particular reference to Signy Island. British Antarctic Survey Scientific Reports , No. 68, 129 pp.Google Scholar
Smith, R.I.L. 1984. Terrestrial plant biology of the sub-Antarctic and Antarctic. In Laws, R.M.,ed. Antarctic ecology, vol. 1. London: Academic Press, 61162.Google Scholar
Smith, R.I.L. 1990. Plant community dynamics in Wilkes Land, Antarctica. Proceedings of the National Institute of Polar Research Symposium on Polar Biology, 3, 229244.Google Scholar
Smith, R.I.L. 1996. Terrestrial and freshwater biotic components of the western Antarctic Peninsula. Antarctic Research Series, 70, 1559.CrossRefGoogle Scholar
Smith, R.I.L. 2003. The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In Huiskes, A.H.L., Gieskes, W.C., Rozema, J., Schorno, R.M.L., van der Vies, S.M. & Wolff, W.J.,eds. Antarctic biology in a global context. Leiden: Backhuys Publishers, 234239.Google Scholar
Smith, R.I.L. 2005. The thermophilic bryoflora of Deception Island: unique plant communities as a criterion for designating an Antarctic Specially Protected Area. Antarctic Science, 17, 1725.CrossRefGoogle Scholar
Smith, R.I.L. 2007. Liverworts. In Riffenburgh, B., ed. Encyclopaedia of the Antarctic. London: Routledge, 596597.Google Scholar
Smith, R.I.L.Convey, P. 2002. Enhanced sexual reproduction in bryophytes at high latitudes in the maritime Antarctic. Journal of Bryology, 24, 107117.CrossRefGoogle Scholar
Smith, S.E.Read, D.J. 2008. Mycorrhizal symbiosis, 3rd ed. London: Academic Press, 605 pp.Google Scholar
Snell, K.R.S. 2007. Photoprotective pigments in Cephaloziella varians: investigating responses to climate change. MPhil thesis, Open University, 224 pp. [Unpublished.].Google Scholar
Snell, K.R.S., Convey, P.Newsham, K.K. 2007. Metabolic recovery of the Antarctic liverwort Cephaloziella varians during spring snowmelt. Polar Biology, 30, 11151122.CrossRefGoogle Scholar
Snell, K.R.S., Kokubun, T., Griffiths, H., Convey, P., Hodgson, D.A.Newsham, K.K. 2009. Quantifying the metabolic cost to an Antarctic liverwort of responding to an abrupt increase in UV-B radiation exposure. Global Change Biology, 15, 25632573.CrossRefGoogle Scholar
Söderström, L. 1995. Preliminary distribution maps of bryophytes in norden. Vol 1. Hepaticae and Anthocerotae. Trondheim: Mossornas Vänner, 51 pp.Google Scholar
Stephani, F. 1901. Hepatiques. In Résultats du Voyage du S.Y. Belgica en 1897–1898–1899 sous le Commandement de A. de Gerlache de Gomery. Expédition Antarctique Belge. Rapports Scientifiques. Antwerp: J.-E. Buschmann, 6 pp.Google Scholar
Stephani, F. 1905. Hepaticae gesammelt von C. Skottsberg während der Schwedischen südpolarexpedition 1901–1903. In Wissenschaftliche Ergebnisse Schwedischen Südpolar-Expedition 1901–1903 unter Leitung von Dr. Otto Nordenskjöld 4 (1). Stockholm: Lithographisches Institut des Generalstabs, 11 pp.Google Scholar
Taniguchi, S., Yazaki, K., Yabu-uchi, R., Kawakami, K., Ito, H., Hatano, T.Yoshida, T. 2000. Galloylglucoses and riccionidin A in Rhus javanica adventitious root cultures. Phytochemistry, 53, 357363.CrossRefGoogle ScholarPubMed
Upson, R., Read, D.J.Newsham, K.K. 2007. Widespread association between the ericoid mycorrhizal fungus Rhizoscyphus ericae and a leafy liverwort in the maritime and sub-Antarctic. New Phytologist, 176, 460471.CrossRefGoogle Scholar
Williams, P.G., Roser, D.J.Seppelt, R.D. 1994. Mycorrhizas of hepatics in continental Antarctica. Mycological Research, 98, 3436.CrossRefGoogle Scholar
Wynn-Williams, D.D. 1980. Seasonal fluctuations in microbial activity in Antarctic moss peat. Biological Journal of the Linnean Society, 14, 1128.CrossRefGoogle Scholar
Wynn-Williams, D.D. 1988. Cotton strip decomposition in relation to environmental factors in the maritime Antarctic. In Harrison, A.F., Latter, P.M. & Walton, D.W.H.,eds. Cotton strip assay: an index of decomposition in soils. Grange-over-Sands: Institute of Terrestrial Ecology, 126133.Google Scholar
Yarrington, M.R.Wynn-Williams, D.D. 1985. Methanogenesis and the anaerobic microbiology of a wet moss community at Signy Island. In Siegfried, W.R., Condy P.R. & Laws, R.M., eds. Antarctic nutrient cycles and food webs. Berlin: Springer, 229233.CrossRefGoogle Scholar