Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T13:46:01.207Z Has data issue: false hasContentIssue false

Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region

Published online by Cambridge University Press:  23 May 2013

Claudia Colesie*
Affiliation:
Plant Ecology and Systematics, University of Kaiserslautern, PO Box 3049, 67653 Kaiserslautern, Germany
Maxime Gommeaux
Affiliation:
GEGENAA, EA 3795, Université de Reims Champagne-Ardenne, 2 Esplanade Roland Garros, 51100 Reims, France
T.G. Allan Green
Affiliation:
Departamento de Biologia Vegetal II, Universidad Complutense, 28040 Madrid, Spain Department of Biological Sciences, University of Waikato, Private Bag 3105, 3240 Hamilton, New Zealand
Burkhard Büdel
Affiliation:
Plant Ecology and Systematics, University of Kaiserslautern, PO Box 3049, 67653 Kaiserslautern, Germany

Abstract

Biological soil crusts are associations of lichens, mosses, algae, cyanobacteria, microfungi and bacteria in different proportions forming a thin veneer within the top centimetres of soil surfaces. They occur in all biomes, but particularly in arid and semi-arid regions, even in the most extreme climates. They carry out crucial ecosystem functions, such as soil stabilization, influencing water and nutrient cycles, and contribute to the formation of microniches for heterotrophic life. In continental Antarctica especially, these roles are essential because no higher plants provide such ecosystem services. We provide a detailed description of biological soil crusts from Garwood Valley, McMurdo Dry Valleys region (78°S) and Diamond Hill (80°S) in the Darwin Mountains region. The coverage was low at 3.3% and 0.8% of the soil surface. At Garwood Valley the crusts were composed of green algal lichens, cyanobacteria, several species of green algae and the moss Hennediella heimii (Hedw.) R.H. Zander. Diamond Hill crusts appear to be unique in not having any species of cyanobacteria. Major parts are embedded in the soil, and their thickness correlates with higher chlorophyll contents, higher soil organic carbon and nitrogen, which are fundamental components of this species poor cold desert zone.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, B.J., Bardgett, R.D., Ayres, E., Wall, D.H., Aislabie, J., Bamforth, S., Bargagli, R., Cary, C., Cavacini, P., Connell, L., Convey, P., Fell, J.W., Frati, F., Hogg, I.D., Newsham, K.K., O'Donnell, A.O., Russell, N., Seppelt, R.D. Stevens, M.I. 2006. Diversity and distribution of Victoria Land biota. Soil Biology & Biochemistry, 38, 30033018.CrossRefGoogle Scholar
Arndal, M.F., Illeris, L., Michelsen, A., Albert, K., Tamstorf, M. Hansen, B.U. 2009. Seasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation types. Arctic, Antarctic and Alpine Research, 41, 164173.CrossRefGoogle Scholar
Barrett, J.E., Johnson, D.W. Burke, I.C. 2002. Abiotic nitrogen uptake in semiarid grassland soils of the U.S. Great Plains. Soil Science Society of America Journal, 66, 979987.CrossRefGoogle Scholar
Barrett, J.E., Virginia, R.A., Hopkins, D.W., Aislabie, J., Bargagli, R., Bockheim, J.G., Campbell, I.B., Lyons, W.B., Moorhead, D.L., Nkem, J.N., Sletten, R.S., Steltzer, H., Wall, D.H. Wallenstein, M.D. 2006. Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biology & Biochemistry, 38, 30193034.CrossRefGoogle Scholar
Belnap, J. Eldridge, D.J. 2001. Disturbance and recovery of biological soil crusts. In Belnap, J. & Lange, O.L., eds. Biological soil crusts: structure, function and management (Ecological Studies, 150). Berlin: Springer, 363385.CrossRefGoogle Scholar
Belnap, J. Lange, O.L. 2001. Structure and functioning of biological soil crusts: a synthesis. In Belnap, J. & Lange, O.L., eds. Biological soil crusts: structure, function and management (Ecological Studies, 150). Berlin: Springer, 471481.CrossRefGoogle Scholar
Belnap, J., Büdel, B. Lange, O.L. 2001. Biological soil crusts: characteristics and distribution. In Belnap, J. & Lange, O.L., eds. Biological soil crusts: structure, function and management. (Ecological Studies, 150). Berlin: Springer, 331.CrossRefGoogle Scholar
Brabyn, L., Beard, C., Seppelt, R.D., Rudolph, E.D., Türk, R. Green, T.G.A. 2006. Quantified vegetation change over 42 years at Cape Hallett, East Antarctica. Antarctic Science, 18, 561572.CrossRefGoogle Scholar
Breen, K. Levesque, E. 2008. The influence of biological soil crusts on soil characteristics along a high arctic glacier foreland, Nunavut, Canada. Arctic, Antarctic and Alpine Research, 40, 287297.CrossRefGoogle Scholar
Broady, P.A. 1983. The Antarctic distribution and ecology of the terrestrial, chlorophytan alga Prasiococcus calcarius (Boye Petersen) Vischer. Polar Biology, 1, 211216.CrossRefGoogle Scholar
Bromwich, D.H. Guo, Z. 2004. Modelled Antarctic precipitation. Part I: spatial and temporal variability. Journal of Climate, 17, 427447.2.0.CO;2>CrossRefGoogle Scholar
Büdel, B., Bendix, J., Bicker, F.R. Green, T.G.A. 2008. Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. Journal of Phycology, 44, 14151424.CrossRefGoogle ScholarPubMed
Cannone, N. Seppelt, R.D. 2008. A preliminary floristic classification of southern and northern Victoria Land vegetation, continental Antarctica. Antarctic Science, 20, 553562.CrossRefGoogle Scholar
Carosi, R., Giacomini, F., Talarico, F. Stump, E. 2007. Geology of the Byrd Glacier Discontinuity (Ross Orogen): new survey data from the Britannia Range, Antarctica. Related Publications from ANDRILL Affiliates. Paper 19. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1018&context=andrillaffiliates, 7 pp.CrossRefGoogle Scholar
Cary, C.S., McDonald, I.R., Barrett, J.E. Cowan, D.A. 2010. On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Reviews, 8, 129138.Google ScholarPubMed
Cowan, D.A., Sohm, J.A., Makhalanyane, T.P., Capone, D.G., Green, T.G.A., Cray, S.C. Tuffin, I.M. 2011. Hypolithic communities: important nitrogen sources in Antarctic desert soils. Environmental Microbiology Reports, 3, 581586.CrossRefGoogle ScholarPubMed
Dickson, L.G. 2000. Constraints to nitrogen fixation by cryptogamic crusts in a polar desert ecosystem, Devon Island, N.W.T., Canada. Arctic, Antarctic and Alpine Research, 32, 4045.CrossRefGoogle Scholar
Dudley, S.A. Lechowicz, M.J. 1987. Losses of polyol through leaching in subarctic lichens. Plant Physiology, 83, 813815.CrossRefGoogle ScholarPubMed
Elberling, B., Gregorich, E.G., Hopkins, D.W., Sparrow, A.D., Novis, P. Greenfield, L.G. 2006. Distribution and dynamics of soil organic matter in an Antarctic dry valley. Soil Biology and Biochemistry, 38, 30953106.CrossRefGoogle Scholar
Elliot, D. Fleming, T. 2004. Occurrence and dispersal of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica. Gondwana Research, 7, 223237.CrossRefGoogle Scholar
Ettl, H. Gärtner, G. 1995. Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart: Gustav Fischer, 729 pp.Google Scholar
Fenice, M., Selbmann, L., Zucconi, L. Onofri, S. 1997. Production of extracellular enzymes by Antarctic fungal strains. Polar Biology, 17, 275280.CrossRefGoogle Scholar
Green, T.G.A. Broady, P.A. 2001. Biological soil crusts of Antarctica. In Belnap, J. & Lange, O.L., eds. Biological soil crusts: structure, function and management (Ecological Studies, 150). Berlin: Springer, 133141.CrossRefGoogle Scholar
Green, T.G.A., Sancho, L.G., Pintado, A. Schroeter, B. 2011. Functional and spatial pressures on terrestrial vegetation in Antarctica forced by global warming. Polar Biology, 34, 16431656.CrossRefGoogle Scholar
Gregorich, E.G., Hopkins, D.W., Elberling, B., Sparrow, A.D., Novis, P., Greenfield, L.G. Rochette, P. 2006. Emission of CO2, CH4 and N2O from lakeshore soils in an Antarctic dry valley. Soil Biology and Biochemistry, 38, 31203129.CrossRefGoogle Scholar
Hopkins, D.W., Sparrow, A.D., Gregorich, E.G., Elberling, B., Novis, P., Fraser, F., Scrimgeour, C., Dennis, P.G., Meier-Augenstein, W. Greenfield, L.G. 2009. Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys. Environmental Microbiology, 11, 597608.CrossRefGoogle ScholarPubMed
Horowitz, N.H., Cameron, R.E. Hubbard, J.S. 1972. Microbiology of the Dry Valleys of Antarctica. Science, 176, 242245.CrossRefGoogle ScholarPubMed
Komárek, J. Anagnostidis, K. 1999. Cyanoprokaryota. Teil 1: Chroococcales. In Ettl, H., Gärtner, G., Heynig, H. & Mollenhauer, D., eds. Süßwasserflora von Mitteleuropa. Jena: Gustav Fischer, 548 pp.Google Scholar
Komárek, J. Anagnostidis, K. 2005. Cyanoprokaryota. Teil 2: Oscillatoriales. In Büdel, B., Gärtner, G., Krienitz, L. & Schagerl, D., eds. Süßwasserflora von Mitteleuropa. München: Elsevier, 759 pp.Google Scholar
Lange, O.L., Meyer, A. Büdel, B. 1994. Net-photosynthesis of a desiccated cyanobacterium without liquid water in high air humidity alone. Experiments with Microcoelus sociatus isolated from a desert soil crust. Functional Ecology, 8, 5257.CrossRefGoogle Scholar
Longton, R.E. 1973. Classification of terrestrial vegetation near McMurdo Sound, continental Antarctica. Canadian Journal of Botany, 51, 23392346.CrossRefGoogle Scholar
Magalhães, C., Stevens, M.I., Cary, S.C., Ball, B.A., Storey, B.C., Wall, D.H., Türk, R. Ruprecht, U. 2012. At limits of life: multidisciplinary insights reveal environmental constraints in biotic diversity in continental Antarctica. PLOS One, 7, 110.CrossRefGoogle ScholarPubMed
Nienow, J.A. Friedmann, E.I. 1993. Terrestrial lithophytic (rock) communities. In Friedmann, E.I., ed. Antarctic microbiology. New York: Wiley-Liss, 343412.Google Scholar
Ochyra, R., Lewis-Smith, R.I. Bednarek-Ochyra, H. 2008. The illustrated moss flora of Antarctica. Cambridge: Cambridge University Press, 704 pp.Google Scholar
Øvstedal, D.O. Smith, R.I.L. 2001. Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Cambridge: Cambridge University Press, 411 pp.Google Scholar
Pérez-Ortega, S., Ortiz-Álvarez, R., Green, T.G.A. De Los Rios, A. 2012. Lichen myco- and photobiont diversity and their relationships at the edge of live (McMurdo Dry Valleys, Antarctica). FEMS Microbial Ecology, 82, 429448.CrossRefGoogle Scholar
Pointing, S.B. Belnap, J. 2012. Microbial colonization and controls in dryland systems. Nature Reviews Microbiology, 10, 551562.CrossRefGoogle ScholarPubMed
Ruprecht, U., Lumbsch, H., Brunauer, G., Green, T.G.A. Türk, R. 2010. Diversity of Lecidea (Lecideaceae, Ascomycota) species revealed by molecular data and morphological characters. Antarctic Science, 22, 727741.CrossRefGoogle Scholar
Schwarz, A.M.J., Green, T.G.A. Seppelt, R.D. 1992. Terrestrial vegetation at Canada Glacier, southern Victoria Land, Antarctica. Polar Biology, 12, 397404.CrossRefGoogle Scholar
Schwarz, A.M.J., Green, J.D., Green, T.G.A. Seppelt, R.D. 1993. Invertebrates associated with moss communities at Canada Glacier, southern Victoria Land, Antarctica. Polar Biology, 13, 157162.CrossRefGoogle Scholar
Seppelt, R.D., Türk, R., Green, T.G.A., Moser, G., Pannewitz, S., Sancho, L.G. Schroeter, B. 2010. Lichen and moss communities of Botany Bay, Granite Harbour, Ross Sea, Antarctica. Antarctic Science, 22, 691702.CrossRefGoogle Scholar
Søchting, U. Castello, M. 2012. The polar lichens Caloplaca darbishirei and C. citrina highlight the direction of bipolar migration. Polar Biology, 35, 11431149.CrossRefGoogle Scholar
Stewart, K.J., Lamb, E.G., Coxson, D.S. Siciliano, S.D. 2011. Bryophyte-cyanobacterial associations as a key factor in N2-fixation across the Canadian Arctic. Plant Soil, 344, 335346.CrossRefGoogle Scholar
Storey, B.C., Fink, D., Hood, D., Joy, K., Shulmeister, J., Riger-Kusk, M. Stevens, M.I. 2010. Cosmogenic nuclide exposure age constraints on the glacial history of the Lake Wellman area, Darwin Mountains, Antarctica. Antarctic Science, 22, 603618.CrossRefGoogle Scholar
Warren-Rhodes, K.A., Rhodes, K.L., Pointing, S.B., Ewing, S.A., Lacap, D.C., Gomez-Silva, B., Amundson, R., Friedmann, E.I. McKay, C.P. 2006. Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microbial Ecology, 52, 389398.CrossRefGoogle ScholarPubMed
Webster-Brown, J., Gall, M., Gibson, J., Wood, S. Hawes, I. 2010. The biochemistry of melt water habitats in the Darwin Glacier region (80°S), Victoria Land, Antarctica. Antarctic Science, 22, 646661.CrossRefGoogle Scholar