Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T17:34:26.281Z Has data issue: false hasContentIssue false

The biogeochemistry of meltwater habitats in the Darwin Glacier region (80°S), Victoria Land, Antarctica

Published online by Cambridge University Press:  02 December 2010

J. Webster-Brown*
Affiliation:
Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
M. Gall
Affiliation:
NIWA, Christchurch, New Zealand
J. Gibson
Affiliation:
Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Hobart, Australia
S. Wood
Affiliation:
Cawthron Institute, Nelson, New Zealand
I. Hawes
Affiliation:
Aquatic Research Solutions Ltd, Cambridge, New Zealand

Abstract

Meltwater habitats in the Darwin Glacier region, Victoria Land (80°S), were sampled in December 2007 and January 2009 to characterize their microbial and metazoan ecology, nutrient status and geochemistry. Targeted areas included terrestrial ponds of the Grant Valley, Lake Wellman, Tentacle Ridge and Diamond Hill, and supraglacial ponds and cryoconite holes of the lower Darwin Glacier. Geochemistry ranged from Na-Cl dominated terrestrial ponds to Na-HCO3 dominated, dilute supraglacial ponds and cryoconites. All showed the nitrate enrichment typical of inland ponds of Victoria Land (up to 13 g.l-1 NO3-N), with some precipitating nitratine (NaNO3) salt. Elevated pH indicated ongoing photosynthetic processes. Benthic microbial mats were thin and poorly developed, dominated by oscillatoriacean cyanobacteria. Nitrogen-fixing genera were generally absent and diatoms were rare. A large (20 μm long) Cyanothece species was the most abundant cyanobacterium in the water and in sediments of the cryoconites. DNA finger-printing identified distinct differences in cyanobacterial and bacterial community structure between the cryoconites, terrestrial ponds and ponds on glacial margins. Eleven metazoan species were identified, with rotifers being the most abundant. Pond substrate (terrestrial rock, ice-cored moraine or supraglacial ice) proved to be a more significant influence on biogeochemistry than other aspects of geography or climatic conditions.

Type
Research Article
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdo, Z., Schüette, U., Bent, S., Williams, C., Forney, L. Joyce, P. 2006. Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environmental Microbiology, 8, 929938.CrossRefGoogle ScholarPubMed
Adams, B.J., Bardgett, R.D., Ayres, E., Wall, D.H., Aislabie, J., Bamforth, S., Bargagli, R., Cary, C., Cavacini, P., Connell, L., Convey, P., Fell, J.W., Frati, F., Hogg, I.D., Newsham, K.K., O’donnell, A., Russell, N., Seppelt, R.D. Stevens, M.I. 2006. Diversity and distribution of Victoria Land biota. Soil Biology & Biochemistry, 38, 30033018.CrossRefGoogle Scholar
Andrassy, I. 1998. Nematodes in the sixth continent. Journal of Nematode Systematics & Morphology, 1, 107186.Google Scholar
Andrassy, I. 2008. Eudorylaimus species (Nematoda: Dorylaimida) of continental Antarctica. Journal of Nematode Systematics and Morphology, 11, 4966.Google Scholar
Andrassy, I. Gibson, J.A.E. 2007. Nematodes from saline and freshwater lakes of the Vestfold Hills, including description of Hypodontolaimus antarcticus sp. n. Polar Biology, 30, 669678.CrossRefGoogle Scholar
Bagshaw, E.A., Tranter, M., Fountain, A.G., Welch, K.A., Basagic, H. Lyons, W.B. 2007. Biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica. Journal of Geophysical Research, 12, GO4S35.Google Scholar
Binda, M.G. Pilato, G. 2000. Diphascon (Adropion) tricuspidatum, a new species of eutardigrade from Antarctica. Polar Biology, 23, 7576.CrossRefGoogle Scholar
Broady, P.A. 1989. Survey of algae and other terrestrial biota at Edward VII Peninsula, Marie Byrd Land. Antarctic Science, 1, 215224.CrossRefGoogle Scholar
Cardinale, M., Brusetti, L., Quatrini, P., Borin, S., Puglia, A., Rizzi, A., Zanardini, E., Sorlini, C., Corselli, C. Daffonchio, D. 2004. Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Applied and Environmental Microbiology, 70, 61476156.CrossRefGoogle ScholarPubMed
Christner, B.C. Kvitko, B.H. 2003. Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles, 7, 177183.CrossRefGoogle ScholarPubMed
Dartnall, H.J.G. 2000. A limnological reconnaissance of the Vestfold Hills. ANARE Reports, 141, 155.Google Scholar
Dastych, H. 1991. Redescription of Hypsibius antarcticus (Richters, 1904), with some notes Hypsibius arcticus (Murray, 1907) (Tardigrada). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 88, 141159.Google Scholar
Downes, M.T., Hrstich, L. Vincent, W. 1993. Extraction of chlorophyll and carotenoid pigments from Antarctic benthic mats for analysis by HPLC. Journal of Applied Phycology, 5, 623628.CrossRefGoogle Scholar
Eaton, A., Franson, M. Clesceri, L., eds. 2005. Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.Google Scholar
Foreman, C.M., Sattler, B., Mikucki, J.A., Porazinska, D.L. Priscu, J.C. 2006. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. Journal of Geophysical Research, 112, 10.1029/2006JG000358.Google Scholar
Fountain, A.G., Tranter, M. Nylen, T.H. 2004. Cryoconite holes of Dry Valley glaciers, Taylor Valley, Antarctica. Journal of Glaciology, 50, 3545.CrossRefGoogle Scholar
Fourre, J.-B.P., Dapoigny, A., Baumier, D., Petit, J.-R. Jouzel, J. 2006. Past and present tritium levels in Arctic and Antarctic polar caps. Earth & Planetary Science Letters, 245, 5664.CrossRefGoogle Scholar
Hawes, I., Howard-Williams, C. Fountain, A.G. 2008. Ice-based freshwater ecosystems. In Vincent, W.F. & Laybourn-Parry, J., eds. Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford: Oxford University Press, 103118.CrossRefGoogle Scholar
Hawes, I., Howard-Williams, C. Pridmore, R.D. 1993. Environmental controls on microbial biomass in the ponds of the McMurdo Ice Shelf, Antarctica. Archiv fur Hydrobiologie, 127, 271287.CrossRefGoogle Scholar
Hawes, I., Howard-Williams, C., Schwarz, A.-M.J. Downes, M.T. 1997. Environment and microbial communities in a tidal lagoon at Bratina Island, McMurdo Ice Shelf, Antarctica. In Battaglia, B., Valencia, J. & Walton, D., eds. Antarctic communities: species, structure and survival. Cambridge: Cambridge University Press, 170177.Google Scholar
Healy, M., Webster-Brown, J.G., Brown, K.L. Lane, V. 2006. Chemistry and stratification of Antarctic meltwater ponds II: inland ponds in the McMurdo Dry Valleys, Victoria Land. Antarctic Science, 18, 525533.CrossRefGoogle Scholar
Hendy, C.H. 1975. Report of the University of Waikato Antarctic Research Unit for the 1974–75 field season. University of Waikato, New Zealand, unpublished report.Google Scholar
Hendy, C.H. 2000. Late Quarternary lakes in the McMurdo Sound region of Antarctica. Geografiska Annaler, 82A, 411431.CrossRefGoogle Scholar
Howard-Williams, C., Hawes, I. Gordon, S. 2010. The environmental basis of ecosystem variability in Antarctica: research in the Latitude Gradient Project. Antarctic Science, 21.Google Scholar
Howard-Williams, C., Peterson, D., Lyons, W.B., Cattano-Vietti, R. Gordon, S. 2006. Measuring ecosystem response in a rapidly changing environment: the Latitude Gradient Project. Antarctic Science, 18, 465471.CrossRefGoogle Scholar
John, D.M., Whitton, B.A. Brook, A.J., eds. 2002. The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge: Cambridge University Press, 714 pp.Google Scholar
Jungblut, A., Hawes, I., Mountfort, D.O., Hitzfeld, B., Dietrich, D.R., Burns, B.P. Neilan, B.A. 2005. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environmental Microbiology, 7, 519529.CrossRefGoogle ScholarPubMed
Keys, J.R. Williams, K. 1981. Origin of crystalline, cold desert salts in the McMurdo region, Antarctica. Geochimica et Cosmochimica Acta, 45, 22992309.Google Scholar
Komárek, J. Anagnostidis, K. 2000. Cyanoprokaryota. 1. Teil, Chroococcales. In Ettl, H., Gartner, G., Heynig, H. & Molllenhauer, D., eds. Susswasserflora von Mitteleuropa, vol. 19(1). Jena: Gustav Fisher, 548 pp.Google Scholar
Komárek, J. Anagnostidis, K. 2005. Cyanoprokaryota. 2. Teil, Oscillatoriales. In Budel, B., Krienitz, L., Gartner, G. & Schagerl, M., eds. Susswasserflora von Mitteleuropa, vol. 19(2). Jena: Gustav Fisher, 750 pp.Google Scholar
Lebaron, P., Parthuisot, N. Catala, P. 1998. Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems. Applied and Environmental Microbiology, 64, 1725.CrossRefGoogle ScholarPubMed
Mueller, D.R., Vincent, W.F., Pollard, W.H. Fritsen, C.H. 2001. Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwigia, 123, 171195.Google Scholar
Murray, J. 1910. Antarctic Rotifera. In Murray, J., ed. British Antarctic Expedition, 1907–1909: Reports on the Scientific Investigations. Biology, Vol. I, part III. London: William Heinemann, 4173.Google Scholar
Pilato, G. Binda, M.G. 1999. Three new species of Diphascon of the pingue group (Eutardigrada, Hypsibiidae) from Antarctica. Polar Biology, 21, 335342.CrossRefGoogle Scholar
Prescott, G.W. 1982. Algae of the western Great Lakes area. Dubuque, IA: WMC Brown Co. Publishers, 946 pp.Google Scholar
Quesada, A., Fernández-Valiente, E., Hawes, I. Howard-Williams, C. 2008. Benthic primary production in polar lakes and rivers. In Vincent W.F. & Laybourn-Parry J., eds. Polar lakes and rivers: Arctic and Antarctic aquatic ecosystems. Oxford: Oxford University Press, 179196.CrossRefGoogle Scholar
Schmidt, S., Moskal, W., de Mora, S.J., Howard-Williams, C. Vincent, W.F. 1991. Limnological properties of Antarctic ponds during winter freezing. Antarctic Science, 3, 379388.CrossRefGoogle Scholar
Simpson, A.L. Cooper, A.F. 2002. Geochemistry of the Darwin Glacier region granitoids, southern Victoria Land. Antarctic Science, 14, 425426.CrossRefGoogle Scholar
Strickland, J.D.H. Parsons, T.R. 1968. A practical handbook of seawater analysis. Fisheries Research Board Canada Bulletin, 167, 167311.Google Scholar
Sutherland, D. 2009. Microbial mat communities in response to recent changes in the physiochemical environment of the meltwater ponds on the McMurdo Ice Shelf, Antarctica. Polar Biology, 32, 10231032.CrossRefGoogle Scholar
Takacs, C.T. Priscu, J.C. 1998. Bacterioplankton dynamics in the McMurdo Dry Valley lakes: production and biomass loss over four seasons. Microbiology Ecology, 36, 239250.CrossRefGoogle ScholarPubMed
Taton, A., Grubisic, S., Balthasart, P., Hodgson, D.A., Laybourn-Parry, J. Wilmotte, A. 2006. Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiological Ecology, 57, 272289.CrossRefGoogle ScholarPubMed
Timperley, M. 1997. A simple temperature-based model the chemistry of melt-water ponds in the Darwin Glacier area, 80°S. In Lyons, W.B., Howard-Williams, C. & Hawes, I., eds. Ecosystem processes in Antarctic ice-free landscapes. Rotterdam: Balkema, 197206.Google Scholar
Ütermöhl, H. 1958. Zür Vervollkommung der quantitativen Phytoplankton-Methodik. Internationale Vereinigung für theoretische und angewandte Limnologie Mitteilungen, 9, 139.Google Scholar
Vincent, W.F. Howard-Williams, C. 1994. Nitrate-rich inland waters of the Ross Ice Shelf region, Antarctica. Antarctic Science, 6, 339346.CrossRefGoogle Scholar
Wagner, B., Cremer, H., Hultzsch, N., Gore, D.B. Melles, M. 2004. Late Pleistocene and Holocene history of Lake Terrasovoje, Amery Oasis, East Antarctica, and its climatic and environmental implications. Journal of Palaeolimnology, 32, 321339.CrossRefGoogle Scholar
Wait, B.R., Webster-Brown, J.G., Brown, K.L., Healy, M. Hawes, I. 2006. Chemistry and stratification of Antarctic meltwater ponds I: coastal ponds near Bratina Island (Lat 78°S), Ross Sea. Antarctic Science, 18, 515524.CrossRefGoogle Scholar
Webster, J.G., Brown, K.L. Vincent, W.F. 1994. Geochemical processes affecting meltwater chemistry and the formation of saline ponds in the Victoria Valley and Bull Pass region, Antarctica. Hydrobiologia, 281, 171186.CrossRefGoogle Scholar
Webster, J.G., Webster, K.S. Hawes, I. 1997. Trace metal transport and speciation in Lake Wilson: a comparison with Lake Vanda. In Lyons, W.B., Howard-Williams, C. & Hawes, I., eds. Ecosystem processes in Antarctic ice-free landscapes. Rotterdam: Balkema, 221230.Google Scholar
Webster, J.G., Hawes, I., Downes, M., Timperley, M. Howard-Williams, C. 1996. Evidence for regional climate change in the recent evolution of a high latitude pro-glacial lake. Antarctic Science, 8, 4959.CrossRefGoogle Scholar
Wood, S., Rueckert, A., Cowan, D. Cary, S. 2008. Sources of edaphic cyanobacterial diversity in the Dry Valleys of eastern Antarctica. ISME Journal, 2, 308320.CrossRefGoogle ScholarPubMed
Wright, S.W. Mantoura, R.F.C. 1997. Guidelines for collection and pigment analysis of field samples. In Jeffrey, S.W., Mantoura, R.F.C. & Wright, S.W., eds. Phytoplankton pigments in oceanography: guidelines to modern methods. Paris: UNESCO, 426445.Google Scholar
Zapata, M., Rodriguez, F. Garrido, J.L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using reversed phase C8 column and pyridine-containing mobile phases. Marine Ecological Progress Series, 195, 2945.CrossRefGoogle Scholar