Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T02:09:16.109Z Has data issue: false hasContentIssue false

Biodiversity of echinoids and their epibionts around the Scotia Arc, Antarctica

Published online by Cambridge University Press:  19 May 2008

Katrin Linse*
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
Lisa J. Walker
Affiliation:
Downing College, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
David K.A. Barnes
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK

Abstract

The Scotia Arc, linking the Magellan region with the Antarctic Peninsula, comprises young and old islands both near continents and isolated, and is the only semi-continuous link between cool temperate and Antarctic environments. It is an ideal region for studies on how marine biodiversity changes across an extended transition zone. Echinoids (sea urchins) and their associated epibionts were found across depths from 91–1045 m, with 19 species from shelf and four from slope depths. The 23 species from 38 trawls represent 31% of all echinoid species known from the Southern Ocean and 38% of the shelf/upper slope echinoids. The specimens collected comprise representatives of the five families Cidaridae, Echinidae, Temnopleuridae, Schizasteridae and Pourtalesiidae. Echinoids are probably a good model for how well we know Antarctic shelf and slope megabenthos; none of the species we report are new to science but we found nine (39%) of our study species present at new localities, some thousands of kilometres from previous findings. New biogeographic ranges are illustrated for Ctenocidaris gigantea, C. nutrix, C. spinosa, Abatus curvidens, A. ingens, A. shackletoni, Amphineustes rostratus, Tripylaster philippi and Pourtalesia aurorae. Southern Ocean echinoids show eurybathy as the mean depth range of our study species was 1241 m and only one was at less than 500 m. The current view of echinoid dominance of super-abundance in the shallows seems to be not transferable to shelf and slope depths as only one of 38 trawls was dominated by echinoids. Current knowledge on maximum sizes in Antarctic echinoids seems to be good as our morphometric measurements were mainly within known size ranges. Regular echinoids increased predictably in mass with increasing test length, apart from Ctenocidaris spinosa. Tissue mass of cidaroid species was ~17%, but across irregular species varied from 17.7–8.9%. No epibionts were found on irregular echinoids or Echinidae but 70 cidaroids examined carried 51 species representing ten classes. Many of these species are reported as cidaroid epibionts for the first time. Cidaroids and their epibionts constituted > 38% of the total macrofaunal richness in the trawls they were present in. Echinoids and their epibionts clearly contribute significantly to Southern Ocean biodiversity but are minor components of biomass except in the shallows.

Type
Research Article
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allcock, A.L. 2005. On the confusion surrounding Pareledone charcoti (Joubin, 1905) (Cephalopoda: Octopodidae): endemic radiation in the Southern Ocean. Zoological Journal of the Linnean Society, 143, 75108.CrossRefGoogle Scholar
Andrew, N.L., Agatsuma, Y., Ballesteros, E., Bazhin, A.G., Creaser, E.P., Barnes, D.K.A., Botsford, L.W., Bradbury, A., Campbell, A., Dixon, J.D., Einarsson, S., Gerring, P., Hebert, K., Hunter, M., Hur, S.B., Johnson, C.R., Juinio-Menez, M.A., Kalvass, P., Miller, R.J., Moreno, C.A., Palleiro, J.S., Rivas, D., Robinson, S.M.L., Schroeter, S.C., Steneck, R.S., Vadas, R.I., Woodby, D.A. & Xiaoqi, Z. 2002. Status and management of world sea urchin fisheries. Oceanography and Marine Biology, 40, 343425.Google Scholar
Arnaud, P.M., Lopez, C.M., Olaso, I., Ramil, F., Ramos-Espla, A.A. & Ramos, A. 1998. Semi-quantitative study of macrobenthic fauna in the region of the South Shetland Islands and the Antarctic Peninsula. Polar Biology, 19, 160166.CrossRefGoogle Scholar
Arntz, W.E., Brey, T. & Gallardo, V.A. 1994. Antarctic zoobenthos. Oceanography and Marine Biology, 32, 241304.Google Scholar
Arntz, W., Gutt, J. & Klages, M. 1997. Antarctic marine biodiversity: an overview. In Battaglia, B., Valencia, J. & Walton, D.W.H., eds. Antarctic communities: species, structure and survival. Cambridge: Cambridge University Press, 314.Google Scholar
Arntz, W.E., Lovrich, G. & Thatje, S., eds. 2005a. The Magellan–Antarctic connection: Links and frontiers at high southern latitudes. Scientia Marina, 69, 373 pp.CrossRefGoogle Scholar
Arntz, W.E., Thatje, S., Gerdes, D., Gili, J.-M., Gutt, J., Jacob, U., Montiel, A., Orejas, C. & Teixido, N. 2005b. The Antarctic-Magellan connection: macrobenthos ecology on the shelf and upper slope, a progress report. Scientia Marina, 69, 237269.CrossRefGoogle Scholar
Arntz, W.E. & Brey, T. 2003. The Expedition ANTARKTIS XIX/5 (LAMPOS) of RV “Polarstern” in 2003. Berichte zur Polar- und Meeresforschung, 462, 1120.Google Scholar
Arntz, W.E. & Rios, C. 1999. Magellan-Antarctic: ecosystems that drifted apart. Scientia Marina, 63 (Sup. 1), 518 pp.CrossRefGoogle Scholar
Barnes, D.K.A. & Brockington, S. 2003. Zoobenthic diversity, biomass and abundance at Adelaide Island, Antarctica. Marine Ecology Progress Series, 249, 145155.CrossRefGoogle Scholar
Barnes, D.K.A. & Clarke, A. 1995. Epibiotic communities on sublittoral macroinvertebrates at Signy Island, Antarctica. Journal of the Marine Biological Association of the United Kingdom, 75, 689703.CrossRefGoogle Scholar
Barnes, D.K.A. & Conlan, K. 2007. Disturbance, colonization and development of Antarctic benthic communities. Philosophical Transactions of the Royal Society of London, B362, 1138.CrossRefGoogle Scholar
Barnes, D.K.A. & Griffiths, H.J. 2008. Biodiversity and biogeography of southern temperate and polar bryozoans. Global Ecology and Biogeography, 17, 8499.CrossRefGoogle Scholar
Barrett, P.J. 2001. Climate change - an Antarctica perspective. New Zealand Science Review, 58, 1823.Google Scholar
Barry, J.B., Grebmeier, J.M., Smith, J. & Dunbar, R.B. 2003. Oceanographic versus seafloor-habitat control of benthic megafaunal communities in the S.W. Ross Sea, Antarctica. Antarctic Research Series, 78, 327354.CrossRefGoogle Scholar
Blake, D.B. & Aronson, R.B. 1998. Eocene stelleroids (Echinodermata) at Seymour Island, Antarctic Peninsula. Journal of Paleontology, 72, 339353.CrossRefGoogle Scholar
Bosch, I., Beauchamp, K.A., Steele, M.E. & Pearse, J.S. 1987. Development, metamorphosis and seasonal abundance of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri. Biological Bulletin, 173, 126135.CrossRefGoogle ScholarPubMed
Brandt, A., De Broyer, C., De Mesel, I., Ellingsen, K.E., Gooday, A.J., Hilbig, B., Linse, K., Thomson, M.R.A. & Tyler, P.A. 2007a. The biodiversity of the deep Southern Ocean benthos. Philosophical Transactions of the Royal Society of London, B362, 3966.CrossRefGoogle Scholar
Brey, T. & Gutt, J. 1991. The genus Sterechinus (Echinodermata: Echinoidea) on the Weddell Sea shelf and slope, distribution, abundance and biomass. Polar Biology, 11, 227232.CrossRefGoogle Scholar
Brey, T., Pearse, J., Basch, L., McClintock, J. & Slattery, M. 1995. Growth and reproduction of Sterechinus neumayeri (Echinodermata: Echinoidea) in McMurdo Sound, Antarctica. Marine Biology, 124, 279292.CrossRefGoogle Scholar
Brey, T., Dahm, C., Gorny, M., Klages, M., Stiller, M. & Arntz, W.E. 1996. Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarctic Science, 8, 36.CrossRefGoogle Scholar
Brockington, S. 2001. The seasonal ecology and physiology of Sterechinus neumayeri (Echinodermata: Echinoidea) at Adelaide Island, Antarctica. PhD thesis, Open University, Milton Keynes, UK, and British Antarctic Survey, Cambridge, UK, 209 pp. [Unpublished].Google Scholar
Brockington, S., Peck, L.S. & Tyler, P.A. 2007 Gametogenesis and gonad mass cycles in the common circumpolar Antarctic echinoid Sterechinus neumayeri. Marine Ecology Progress Series, 330, 139147.CrossRefGoogle Scholar
Brockington, S. & Peck, L.S. 2001. Seasonality of respiration and ammonium excretion in the Antarctic echinoid Sterechinus neumayeri. Marine Ecology Progress Series, 219, 159168.CrossRefGoogle Scholar
Brockington, S., Clarke, A. & Chapman, A.L.G. 2001. Seasonality of feeding and nutritional status during the austral winter in the Antarctic sea urchin Sterechinus neumayeri. Marine Biology, 139, 127138.Google Scholar
Brown, K., Fraser, K.P.P., Barnes, D.K.A. & Peck, L. 2004. Links between the structure of an Antarctic shallow-water community and ice impact frequency. Oecologia, 141, 121129.CrossRefGoogle Scholar
Chenuil, A., Hault, A. & Féral, J.-P. 2004. Paternity analysis in the Antarctic brooding sea urchin Abatus nimrodi. A pilot study. Polar Biology, 27, 177182.CrossRefGoogle Scholar
Chiantore, M., Guidetti, M., Cavallero, M., De Domenico, F., Albertelli, G. & Cattaneo-Vietti, R. 2006. Sea urchins, sea starts and brittle stars from Terra Nova Bay (Ross Sea, Antarctica). Polar Biology, 29, 467475.CrossRefGoogle Scholar
Clarke, A. & Johnston, N. 2003. Antarctic marine benthic diversity. Oceanography and Marine Biology, 41, 47114.Google Scholar
Clarke, A., Griffiths, H.J., Linse, K., Barnes, D.K.A. & Crame, J.A. 2007. How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographic patterns in Southern Ocean gastropod and bivalve molluscs. Diversity & Distribution, 13, 620632.CrossRefGoogle Scholar
Collins, M.A. & Rodhouse, P.G.K. 2006. Southern Ocean cephalopods. Advances in Marine Biology, 50, 191265.CrossRefGoogle ScholarPubMed
Convey, P. 2006. Antarctic climate change and its influence on terrestrial ecosystems. In Bergstrom, D., Convey, P. & Huiskes, A.H.L., eds. Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Dordrecht: Springer. 253272.CrossRefGoogle Scholar
Cox, N.L. & Halanych, K.M. 2005. Phylogeography of Sterechinus neumayeri from South American and Antarctic waters using the 16S MTDNA marker. Integrative and Comparative Biology, 45, 1122.Google Scholar
Cranmer, T.L., Ruhl, H.A., Baldwin, R.J. & Kaufmann, R.S. 2003. Spatial and temporal variation in the abundance, distribution and population structure of epibenthic megafauna in Port Foster, Deception Island. Deep-Sea Research II, 50, 18211842.CrossRefGoogle Scholar
David, B & Laurin, B. 1991. L'ontogenèse complexe du spatangue Echinocardium cordatum: Un test des standards des trajectoires hétérochroniques. Geobios, 24, 569583.CrossRefGoogle Scholar
David, B., Magniez, F., Villier, L. & De Wever, P. 2003. Conveying behaviour of the deep sea pourtalesiid Cystocrepis setigera off Peru. In Fèrd, J.P. & David, B., eds. Echinodermata research 2001. Lisse: Swets & Zeitlinger, 253257.Google Scholar
David, B., Choné, T., Festeau, A., Mooi, R. & De Ridder, C. 2005a. Biodiversity of Antarctic echinoids: a comprehensive and interactive database. Scientia Marina, 69, 201203.CrossRefGoogle Scholar
David, B., Choné, T., Mooi, R. & De Ridder, C. 2005b. Antarctic Echinoidea. In Wägele, J.W. & Sieg, J., eds. Synopses of the Antarctic benthos, vol. 10. Königstein: Koeltz Scientific books, 274 pp.Google Scholar
De Domenico, F., Chiantore, M., Buongiovanni, S., Ferranti, M.P., Ghione, S., Thrush, S., Cummings, V., Hewitt, J., Kroeger, K. & Cattaneo-Vietti, R. 2006. Latitude versus local effects on echinoderm assemblages along the Victoria Land coast, Ross Sea, Antarctica. Antarctic Science, 18, 655662.CrossRefGoogle Scholar
De Ridder, C. & Lawrence, J.M. 1982. Food and feeding mechanisms in echinoids (Echinodermata). In Jangoux, M. & Lawrence, J.M., eds. Echinoid nutrition. Rotterdam: A.A. Balkema, 57115.Google Scholar
De Ridder, C., David, B. & Larrain, A. 1992. Antarctic and subantarctic echinoids from Marion Dufresne expeditions MD03, MD04, MD08 and from the Polarstern expedition Epos III. Bulletin du Muséum national d'histoire naturelle Paris, A4, 405441.CrossRefGoogle Scholar
Elner, R.W. & Vadas, R.L. 1990. Inference in ecology: the sea urchin phenomenon in the northwestern Atlantic. American Naturalist, 136, 108125.CrossRefGoogle Scholar
Griffiths, H.J., Linse, K. & Barnes, D.K.A. 2008. Distribution of macrobenthic taxa across the Scotia Arc, Antarctica. Antarctic Science, 20, 213–226.CrossRefGoogle Scholar
Hayward, P.J. 1995. Antarctic cheilostomatous bryozoa. Oxford: Oxford University Press, 355 pp.Google Scholar
Hedgpeth, J. 1969. Introduction to Antarctic zoogeography. Antarctic Map Folio Series, 11, 144.Google Scholar
Hétérier, V., De Ridder, C., David, B. & Rigaud, T. 2004. Comparative biodiversity of ectosymbionts in two Antarctic cidaroid echinoids, Ctenocidaris spinosa and Rhynchocidaris triplopora. In Heinzeller, T. & Nebelsick, J., eds. Echinoderms. Proceedings 11th IEC, München. Rotterdam: Swets & Zeitlinger, 201205.Google Scholar
Hilbig, B., Gerdes, D. & Montiel, A. 2006. Distribution patterns and biodiversity in polychaete communities of the Weddell Sea and Antarctic Peninsula area (Southern Ocean). Journal of the Marine Biological Association of the United Kingdom, 86, 711725.CrossRefGoogle Scholar
Hotchkiss, F.H.C. 1982. Antarctic fossil echinoids: review and current research. In Craddock, C., ed. Antarctic geoscience Madison: University of Wisconsin Press, 679684.Google Scholar
Jacob, U., Terpstra, S. & Brey, T. 2003. High-Antarctic regular sea urchins - the role of depth and feeding in niche separation. Polar Biology, 26, 99104.CrossRefGoogle Scholar
Jacob, U. 2001. Ökologie der cidaroiden Seeigel des Weddelmeeres. Diplomarbeit, Universität Bremen, 156. [Unpublished].Google Scholar
Kaiser, S., Barnes, D.K.A. & Brandt, A. 2007. Slope and deep-sea abundance across scales: Southern Ocean isopods show how complex the deep sea can be. Deep Sea Research II, 54, 11761189.CrossRefGoogle Scholar
Kaiser, S. & Brandt, A. 2007. Two new species of the genus Austroniscus Vanhoeffen, 1914 (Isopoda: Asellota: Nannoniscidae) from the Antarctic Shelf. Zootaxa, 1394, 4768.CrossRefGoogle Scholar
Linse, K., Barnes, D.K.A. & Enderlein, P. 2006a. Body size and growth of benthic invertebrates along an Antarctic latitudinal gradient. Deep-Sea Research Part II, 53, 921931.CrossRefGoogle Scholar
Linse, K., Griffiths, H.J., Barnes, D.K.A. & Clarke, A. 2006b. Biodiversity and biogeography of Antarctic and sub-Antarctic Mollusca. Deep-Sea Research II, 53, 9851008.CrossRefGoogle Scholar
Linse, K. 2008. BIOPEARL, a multidisciplinary expedition to the Scotia Arc, Antarctica. Antarctic Science, 20, 211–212.Google Scholar
Livermore, R.A., Eagles, G., Morris, P. & Maldonado, A. 2004. Shackleton Fracture Zone: no barrier to early circumpolar ocean circulation. Geology, 32, 797800.CrossRefGoogle Scholar
Livermore, R., Hillenbrand, C.-D., Meredith, M.P. & Eagles, G. 2007. Drake Passage and Cenozoic climate: an open and shut case? Geochemistry, Geophysics, Geosystems, 8, 10.1029/2005GC001224.CrossRefGoogle Scholar
Lockhart, S.J., O'Loughlin, P.M. & Tutera, P. 1994. Brood protection and diversity in echinoids from Prydz Bay, Antarctica. In David, B., Guille, A., Feral, J.P. & Roux, M., eds. Echinoderms through time Rotterdam: A.A. Balkema, 749756.Google Scholar
Lovell, L.L. & Trego, K.D. 2003. The epibenthic megafaunal and benthic infaunal invertebrates of Port Foster, Deception Island (South Shetland Islands Antarctica). Deep-Sea Research II, 50, 17991819.CrossRefGoogle Scholar
López-Fe, C.M. 2005. Cheilostomate bryozoa of the Bellingshausen Sea (western Antarctica): a preliminary report of the Results of the BENTART 2003 Spanish expedition. In Moyano, H.I., Cancino, G.J. & Wyse-Jackson, P., eds. Bryozoan studies 2004. London: Routledge, 173179.CrossRefGoogle Scholar
Mackensen, A. 2004. Changing Southern Ocean palaeocirculation and effects on global climate. Antarctic Science, 16, 369386.CrossRefGoogle Scholar
Maldonado, A., Bohoyo, F., Galindo-Zaldivar, J., Hernandez-Molina, J., Jabaloy, A., Lobo, F.J., Rodriguez-Fernandez, J., Surinach, E. & Vazquez, J.T. 2006. Ocean basins near the Scotia-Antarctic plate boundary: influence of tectonics and paleoceanography on the Cenozoic deposits. Marine Geophysical Researches, 27, 83107.CrossRefGoogle Scholar
Massin, C. & Hétérier, V. 2004. On a new species of apodid, Taeniogyrus magnibaculus n.sp. (Echinodermata, Holothuroidea), from Antarctica, living on the spines of cidarid echinoids. Polar Biology, 27, 441444.CrossRefGoogle Scholar
Matsumoto, K., Lynch-Stieglitz, J. & Anderson, R.F. 2001. Similar glacial and Holocene Southern Ocean hydrography. Paleoceanography, 16, 445454.CrossRefGoogle Scholar
Mesphoulhé, P. & David, B. 1992. Stratégie de croissance d'un oursin subantarctique: Abatus cordatus des îles Kerguelen. Comptes rendus de l'Académie des sciences Paris, 314, 205211.Google Scholar
Mooi, R., David, B., Fell, F.J. & Choné, T. 2000. Three new species of bathyal cidaroids (Echinodermata: Echinoidea) from the Antarctic region. Proceedings of the Biological Society of Washington, 113, 224237.Google Scholar
Mooi, R., Constable, H., Lockhart, S. & Pearse, J. 2004. Echinothurioid phylogeny and the phylogenetic significance of Kamptosoma (Echinoidea: Echinodermata). Deep-Sea Research Part II, 51, 19031919.CrossRefGoogle Scholar
Mortensen, T. 1951. A monograph of the Echinoidea. V. Spatangoida 2. Copenhagen: C.A. Reitzel, 593 pp.Google Scholar
Néraudeau, D., Crame, J.A. & Kooser, M. 2000. Upper Cretaceous echinoids form James Ross basin, Antarctica. Géobios, 33, 455466.CrossRefGoogle Scholar
Palma, A.T., Poulin, E., Silva, M.G., San Martin, R.B., Munoz, C.A. & Diaz, A.D. 2007. Antarctic shallow subtidal echinoderms: is the ecological success of broadcasters related to ice disturbance? Polar Biology, 30, 343350.CrossRefGoogle Scholar
Pearse, J.S. & Giese, A.C. 1966. Food, reproduction and organic constitution of the common Antarctic echinoid Sterechinus neumayeri (Meissner). Biological Bulletin, 130, 387401.CrossRefGoogle ScholarPubMed
Pearse, J.S. & Lockhart, S.J. 2004. Reproduction in cold water: paradigm changes in the 20th century and a role for cidaroid sea urchins. Deep-Sea Research Part II, 51, 15331549.CrossRefGoogle Scholar
Pena Cantero, A.L. 2004. How rich is the deep-sea Antarctic benthic hydroid fauna? Polar Biology, 27, 767774.CrossRefGoogle Scholar
Poulin, E., Palma, A.T. & Féral, J.-P. 2002. Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends in Ecology and Evolution, 17, 218222.CrossRefGoogle Scholar
Poulin, E. & Féral, J.-P. 1995. Pattern of spatial distribution of a brood-protecting schizasterid echinoid, Abatus cordatus, endemic to Kerguelen Islands. Marine Ecology Progress Series, 118, 179186.CrossRefGoogle Scholar
Primo, C. & Vazquez, E. 2007. Zoogeography of the Antarctic ascidican fauna in relation to the sub-Antarctic and South America. Antarctic Science, 19, 321336.CrossRefGoogle Scholar
Quale, W., Peck, L.S., Peat, H., Ellis-Evans, J.C. & Harrigan, P.R. 2002. Extreme responses to climate change in Antarctic lakes. Science, 295, 645.CrossRefGoogle Scholar
Ramos, A. 1999. The megazoobenthos of the Scotia Arc islands. Scientia Marina, 63 (Sup. 1), 171182.CrossRefGoogle Scholar
Ramos-Esplà, A.A., Càrcael, J.A. & Varela, M. 2005. Zoogeographic relationships of the littoral ascidiofauna around the Antarctic Peninsula, in the Scotia Arc and in the Magellan region. Scientia Marina, 69 (Sup. 2), 215223.CrossRefGoogle Scholar
Rehm, P., Thatje, S., Arntz, W.E., Brandt, A. & Heilmayer, O. 2006. Distribution and composition of macrozoobenthic communities along a Victoria Land Transect (Ross Sea, Antarctica). Polar Biology, 29, 782790.CrossRefGoogle Scholar
Schatt, P. & Féral, J.-P. 1996. Complete direct development of Abatus cordatus, a brooding schizasterid (Echinodermata: Echinoidea) from Kerguelen, with descrption of perigastrulation, a hypothetical new mode of gastrulation. Biological Bulletin, 190, 2444.CrossRefGoogle Scholar
Schatt, P. & Féral, J.-P. 1991. The brooding cycle of Abatus cordatus (Echinodermata: Spatangoida) at Kerguelen islands. Polar Biology, 11, 283292.CrossRefGoogle Scholar
Smellie, J.L., Morris, P., Leat, P.T. & Turner, D.B. 1998. Submarine caldera and other volcanic observations in Southern Thule, South Sandwich Islands. Antarctic Science, 10, 171172.CrossRefGoogle Scholar
Tatiàn, M., Antacli, J.C. & Sahade, R. 2005. Ascidians (Tunicata, Ascidiacea): species distribution along the Scotia Arc. Scientia Marina, 69 (Sup. 2), 205214.CrossRefGoogle Scholar
Thompson, B.A.W. & Riddle, M.J. 2005. Bioturbation behaviour of the spatangoid urchin Abatus ingens in Antarctic marine sediments. Marine Ecology Progress Series, 290, 135143.CrossRefGoogle Scholar
Tuya, F., Boyra, A., Sanchez-Jerez, P., Barbera, C. & Haroun, R.J. 2004. Relationships between rocky-reef fish assemblages, the sea urchin Diadema antillarum and macroalgae throughout the Canarian Archipelago. Marine Ecology Progress Series, 278, 157169.CrossRefGoogle Scholar
Tyler, P.A., Young, C.M. & Clarke, A. 2000. Temperature and pressure tolerances of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri (Echinodermata: Echinoidea): potential for deep-sea invasion from high latitudes. Marine Ecology Progress Series, 192, 173180.CrossRefGoogle Scholar