Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T16:56:10.588Z Has data issue: false hasContentIssue false

Bicoloromyces kyffinensis: a new genus and species of lichen-inhabiting conidial fungi from 83°46'S

Published online by Cambridge University Press:  17 March 2015

Bettina Heuchert
Affiliation:
Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Herbarium, Neuwerk 21, 06099 Halle, Germany
Leopoldo G. Sancho
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, Madrid 28040, Spain
Uwe Braun
Affiliation:
Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Herbarium, Neuwerk 21, 06099 Halle, Germany
David L. Hawksworth*
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, Madrid 28040, Spain Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Mycology Section, Royal Botanic Gardens, Kew TW9 3DS, UK
*
*corresponding author: [email protected]

Abstract

The new genus and species Bicoloromyces kyffinensis is described as new to science from a sterile crustose lichen, perhaps Lecanora fuscobrunnea or Lecidella sp. from Ebony Ridge of Mount Kyffin, Antarctica. The fungus recalls superficially the lichenicolous species referred to Taeniolella, but differs in having semi-macronematous conidiophores, tissues encrusted with calcium oxalate, aeruginose to blue-black colouration under the microscope, and conidia which are distoseptate and formed in basipetal chains. Energy dispersive spectroscopy established that the encrustations were of calcium oxalate. Differences from genera of rock-inhabiting fungi described from the Antarctic are discussed. This appears to be the furthest south any lichen-inhabiting fungus has been reported.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamo, P. & Violante, P. 2000. Weathering of rocks and neogenesis of minerals associated with lichen activity. Applied Clay Science, 16, 229256.Google Scholar
Alstrup, V. 2002. Revisions of some lichens and lichenicolous fungi from Antarctica. Folia Cryptogamica Estonica, 39, 12.Google Scholar
Arocena, J.M., Glowa, K.R. & Massicotte, H.B. 2001. Calcium-rich hypha encrustations on Piloderma . Mycorrhiza, 10, 209215.CrossRefGoogle Scholar
Bridge, P.D. & Spooner, B.M. 2012. Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem? Fungal Ecology, 5, 381394.Google Scholar
Cawley, R.W. 1960. New Zealand Alpine Club Antarctic expedition, 1959–60. New Zealand Alpine Journal, 19, 253260.Google Scholar
Colesie, C., Green, T.G.A., Türk, R., Hogg, I.D., Sancho, L.G. & Büdel, B. 2014. Terrestrial biodiversity trends along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient, controls and potential limits of bioclimatic modeling. Polar Biology, 37, 10.1007/s00300-014-1513-y.Google Scholar
Crous, P.W., Braun, U. & Groenewald, J.Z. 2007. Mycosphaerella is polyphyletic. Studies in Mycology, 58, 132.Google Scholar
Diederich, P., Braun, U., Heuchert, B. & Ertz, D. 2010. Four new lichen-associated Trimmatostroma species (hyphomycetes). Bulletin Societe Nationale Luxembourg, 111, 4755.Google Scholar
Egidi, E., de Hoog, G.S., Isola, D., Onofri, S., Quaedvlieg, W., de Vries, M., Verkeley, G.J.M., Stielow, J.B., Zucconi, L. & Selbmann, L. 2014. Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies. Fungal Diversity, 65, 127165.Google Scholar
Ellis, M.B. 1971. Dematiaceous hyphomycetes. Kew: Commonwealth Mycological Institute.Google Scholar
Etayo, J. 2006. Two lichenicolous ascomycetes on austral species of Usnea (Lecanorales, Ascomycota). Nova Hedwigia, 83, 483488.CrossRefGoogle Scholar
Green, T.G.A., Sancho, L.G., Türk, R., Seppelt, R.D. & Hogg, I.D. 2011. High diversity of lichens at 84°S, Queen Maud Mountains, suggests preglacial survival of species in the Ross Sea region, Antarctica. Polar Biology, 34, 12111220.Google Scholar
Hawksworth, D.L. 1976. New and interesting microfungi from Slapton, south Devonshire: Deueteromycotina III. Transactions of the British Mycological Society, 67, 5159.Google Scholar
Hawksworth, D.L. 1979. The lichenicolous hyphomycetes. Bulletin of the British Museum of Natural History (Botany), 6, 183300.Google Scholar
Hawksworth, D.L. 2003. The lichenicolous fungi of Great Britain and Ireland: an overview and annotated checklist. Lichenologist, 35, 191232.Google Scholar
Hawksworth, D.L. & Iturriaga, T. 2006. Lichenicolous fungi described from Antarctica and the sub-Antarctic Islands by Carroll W. Dodge (1895–1988). Antarctic Science, 18, 291301.Google Scholar
Hawksworth, D.L., Millanes, A.M. & Wedin, M. 2010. Roselliniella revealed as an overlooked genus of Hypocreales, with the description of a second species on parmelioid lichens. Persoonia, 24, 1217.Google Scholar
Heuchert, B. & Braun, U. 2014. Two new lichen-associated Trimmatostroma species. Herzogia, 27, 227236.CrossRefGoogle Scholar
Lawrey, J.D. & Diederich, P. 2003. Lichenicolous fungi: interactions, evolution and biodiversity. Bryologist, 106, 80120.Google Scholar
Muggia, L., Gueidan, C., Knudsen, K., Perlmutter, G. & Grube, M. 2013. The lichen connections of black fungi. Mycopathologica, 175, 523535.Google Scholar
Onofri, S., Zucconi, L. & Tosi, S. 2007. Continental Antarctic fungi. Eching: IHW-Verlag, 247 pp.Google Scholar
Øvstedal, D.O. & Smith, R.I.L. 2001. Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge: Cambridge University Press, 424 pp.Google Scholar
Pegler, D.N., Spooner, B.M. & Smith, R.I.L. 1980. Higher fungi of Antarctica, the subantarctic zone and Falkland Islands. Kew Bulletin, 35, 499562.Google Scholar
Ruibal, C., Gueidan, C., Selbmann, L., Gorbushina, A.A., Crous, P.W., Groenewald, J.Z., Muggia, L., Grube, M., Isola, D., Schoch, C.L., Staley, J.T., Lutzoni, F. & de Hoog, G.S. 2009. Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Studies in Mycology, 64, 123133.Google Scholar
Selbmann, L., de Hoog, G.S., Mazzaglia, A., Friedmann, E.I. & Onofri, S. 2005. Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Studies in Mycology, 51, 132.Google Scholar
Selbmann, L., Grube, M., Onofri, M., Isola, D. & Zucconi, L. 2013. Antarctic epilithic lichens as niches for black meristematic fungi. Biology, 2, 784797.Google Scholar
Selbmann, L., Isola, D., Egidi, E., Zucconi, L., Gueidan, C., de Hoog, G.S. & Onofri, S. 2014. Mountain tips as reservoirs for new rock-fungal entities: Saxomyces gen. nov. and four new species from the Alps. Fungal Diversity, 65, 167182.Google Scholar
Seifert, K., Morgan-Jones, G., Gams, W. & Kendrick, B. 2011. The genera of hyphomycetes. CBS Biodiversity Series no. 9. Utrecht: CBS/KNAW Fungal Biodiversity Centre, 997 pp.Google Scholar
Sert, H., Sümbül, H. & Sterflinger, K. 2007. Microcolonial fungi from antique marbles in Perge/Side/Ternessos (Antalya/Turkey). Antonie Van Leeuwenhoek, 91, 217227.Google Scholar
Tyndale-Biscoe, C.H. 1960. The southern party. New Zealand Alpine Journal, 19, 260268.Google Scholar
Zhurbenko, M.P. & von Brackel, W. 2013. Checklist of lichenicolous fungi and lichenicolous lichens of Svalbard, including new species, new records and revisions. Herzogia, 26, 323359.Google Scholar