Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T21:13:50.177Z Has data issue: false hasContentIssue false

Bacteria from Fildes Peninsula carry class 1 integrons and antibiotic resistance genes in conjugative plasmids

Published online by Cambridge University Press:  04 December 2017

Verónica Antelo
Affiliation:
Unidad de Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, C.P. 11600, Uruguay
Anne Marie Guerout
Affiliation:
Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
Didier Mazel
Affiliation:
Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
Valeria Romero
Affiliation:
Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, C.P. 11600, Uruguay
José Sotelo-Silveira
Affiliation:
Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, C.P. 11600, Uruguay
Silvia Batista*
Affiliation:
Unidad de Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, C.P. 11600, Uruguay
*
*Corresponding author: [email protected]

Abstract

A total of 63 psychrotolerant bacteria exhibiting resistance to various antibiotics, such as ampicillin, streptomycin and/or trimethoprim, were isolated from diverse sites varying in terms of human influence, from obvious presence to probable absence, on Fildes Peninsula (King George Island, South Shetland Islands). The presence of class 1 integrons in some of these antibiotic resistant isolates was further determined. Plasmids from two isolates (HP19 and CN11) were transferred to Escherichia coli DH5α by conjugation. Sequence analysis of the plasmid from the HP19 isolate exhibited high similarity (~99%) to plasmid p34998-210.894kb of Enterobacter hormaechei subsp. steigerwaltii of clinical origin and confirmed the presence of a dfrA14 cassette in a class 1 integron context. 16S rRNA gene sequence analysis of five of these psychrotolerant isolates indicated similarity with environmental bacteria previously identified as Enterobacter species. Together, these results confirm that there may be no pristine niches for antibiotic resistance gene dissemination.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antelo, V., Romero, H. & Batista, S. 2015. Detection of integron integrase genes on King George Island, Antarctica. Advances in Polar Science, 26, 10.13679/J.ADVPS.2015.1.00030.Google Scholar
Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, L.A. & Struhl, K. 1989. Current protocols in molecular biology. New York, NY: John Wiley.Google Scholar
Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., Meyer, F., Olsen, G.J., Olson, R., Osterman, A.L., Overbeek, R.A., McNeil, L.K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G.D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A. & Zagnitko, O. 2008. The RAST Server: rapid annotations using subsystems technology. BMC genomics, 9, 10.1186/1471-2164-9-75.Google Scholar
Bouvier, M., Demarre, G. & Mazel, D. 2005. Integron cassette insertion: a recombination process involving a folded single strand substrate. EMBO Journal, 24, 10.1038/sj.emboj.7600898.CrossRefGoogle ScholarPubMed
Cambray, G., Guerout, A.M. & Mazel, D. 2010. Integrons. Annual Review of Genetics, 44, 10.1146/annurev-genet-102209-163504.Google Scholar
Carattoli, A., Aschbacher, R., March, A., Larcher, C., Livermore, D.M. & Woodford, N. 2010. Complete nucleotide sequence of the IncN plasmid pKOX105 encoding VIM-1, QnrS1 and SHV-12 proteins in Enterobacteriaceae from Bolzano, Italy compared with IncN plasmids encoding KPC enzymes in the USA. Journal of Antimicrobial Chemotherapy, 65, 10.1093/jac/dkq269.CrossRefGoogle ScholarPubMed
Collis, C.M. & Hall, R.M. 1992. Gene cassettes from the insert region of integrons are excised as covalently closed circles. Molecular Microbiology, 6, 10.1111/j.1365-2958.1992.tb01467.x.Google Scholar
Conlan, S., Thomas, P.J., Deming, C., Park, M., Lau, A.F., Dekker, J.P., Snitkin, E.S., Clark, T.A., Luong, K., Song, Y., Tsai, Y.C., Boitano, M., Dayal, J., Brooks, S.Y., Schmidt, B., Young, A.C., Thomas, J.W., Bouffard, G.G., Blakesley, R.W., Mullikin, J.C., Korlach, J., Henderson, D.K., Frank, K.M., Palmore, T.N. & Segre, J.A. 2014. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Science Translational Medicine, 6, 10.1126/scitranslmed.3009845.Google Scholar
Escudero, J.A., Loot, C., Nivina, A. & Mazel, D. 2015. The integron: adaptation on demand. Microbiology Spectrum, 3, 10.1128/microbiolspec.MDNA3-0019-2014.Google Scholar
Fluit, A.C. & Schmitz, F.-J. 2004. Resistance integrons and super-integrons. Clinical Microbiology and Infection, 10, 10.1111/j.1198-743X.2004.00858.x.CrossRefGoogle ScholarPubMed
Hall, R.M. & Collis, C.M. 1995. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Molecular Microbiology, 15, 10.1111/j.1365-2958.1995.tb02368.x.Google Scholar
Hoffmann, H., Stindl, S., Ludwig, W., Stumpf, A., Mehlen, A., Monget, D., Pierard, D., Ziesing, S., Heesemann, J., Roggenkamp, A. & Schleifer, KH. 2005. Enterobacter hormaechei subsp. oharae subsp. nov., E. hormaechei subsp. hormaechei comb. nov., and E. hormaechei subsp. steigerwaltii subsp. nov., three new subspecies of clinical importance. Journal of Clinical Microbiology, 43, 10.1128/JCM.43.7.3297-3303.2005.Google Scholar
Jové, T., Da Re, S., Denis, F., Mazel, D. & Ploy, M.C. 2010. Inverse correlation between promoter strength and excision activity in class 1 integrons. PLoS Genetics, 6, 10.1371/journal.pgen.1000793.Google Scholar
Lane, D.J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. & Goodfellow. M., eds. Nucleic acid techniques in bacterial systematics. Chichester: John Wiley & Sons, 115175.Google Scholar
Mazel, D. 2006. Integrons: agents of bacterial evolution. Nature Reviews Microbiology, 4, 10.1038/nrmicro1462.Google Scholar
Mazel, D., Dychinco, B., Webb, V.A. & Davies, J. 2000. Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. Antimicrobial Agents and Chemotherapy, 44, 10.1128/AAC.44.6.1568-1574.2000.Google Scholar
Miller, R.V, Gammon, K. & Day, M.J. 2009. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. Canadian Journal of Microbiology, 55, 10.1139/W08-119.Google Scholar
Partridge, S.R., Tsafnat, G., Coiera, E. & Iredell, J.R. 2009. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiology Reviews, 33, 10.1111/j.1574-6976.2009.00175.x.Google Scholar
Ploy, M.C., Courvalin, P. & Lambert, T. 1998. Characterization of In40 of Enterobacter aerogenes BM2688, a class 1 integron with two new gene cassettes, cmlA2 and qacF . Antimicrobial Agents and Chemotherapy, 42, 25572563.CrossRefGoogle ScholarPubMed
Rodríguez-Minguela, C.M., Apajalahti, J.H.A., Chai, B., Cole, J.R. & Tiedje, J.M. 2009. Worldwide prevalence of class 2 integrases outside the clinical setting is associated with human impact. Applied and Environmental Microbiology, 75, 10.1128/AEM.00133-09.Google Scholar
Saikia, S., Saikia, D. & Ramteke, P.W. 2008. Use of microbes from seabird faeces to evaluate heavy metal contamination in Antarctic region. Applied Ecology and Environmental Research, 6, 2131.CrossRefGoogle Scholar
Stokes, H.W. & Hall, R.M. 1989. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Molecular Microbiology, 3, 16691683.CrossRefGoogle ScholarPubMed
Tashyreva, H.O., Iutyns’ka, H.O. & Tashyrev, O.B. 2009. Effect of cultivation parameters of Antarctic strains Enterobacter hormaechei and Brevibacterium antarcticumon resistance to copper(II) ions. Mikrobiolohichnyĭ Zhurnal, 71, 38. [In Ukranian].Google Scholar
Versalovic, J., Koeuth, T. & Lupski, J.R. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research, 19, 68236831.CrossRefGoogle ScholarPubMed
Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7, 10.1089/10665270050081478.Google Scholar
Supplementary material: PDF

Antelo et al supplementary material

Table S1

Download Antelo et al supplementary material(PDF)
PDF 321.5 KB