Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T06:30:22.009Z Has data issue: false hasContentIssue false

Antitumoural activity in Antarctic and sub-Antarctic benthic organisms

Published online by Cambridge University Press:  19 July 2010

Sergi Taboada*
Affiliation:
Department of Animal Biology (Invertebrates), Faculty of Biology, University of Barcelona, Avenida Diagonal 645, 08028 Barcelona, Spain
Luis Francisco García-Fernández
Affiliation:
R&D Department, PharmaMar SAU, Pol Ind La Mina Norte, Avenida de los Reyes 1, 28770 Colmenar Viejo, Madrid, Spain
Santiago Bueno
Affiliation:
R&D Department, PharmaMar SAU, Pol Ind La Mina Norte, Avenida de los Reyes 1, 28770 Colmenar Viejo, Madrid, Spain
Jennifer Vázquez
Affiliation:
Department of Animal Biology (Invertebrates), Faculty of Biology, University of Barcelona, Avenida Diagonal 645, 08028 Barcelona, Spain
Carmen Cuevas
Affiliation:
R&D Department, PharmaMar SAU, Pol Ind La Mina Norte, Avenida de los Reyes 1, 28770 Colmenar Viejo, Madrid, Spain
Conxita Avila
Affiliation:
Department of Animal Biology (Invertebrates), Faculty of Biology, University of Barcelona, Avenida Diagonal 645, 08028 Barcelona, Spain

Abstract

A prospecting search for antitumoural activity in polar benthic invertebrates was conducted on Antarctic and sub-Antarctic benthos in three different areas: Bouvet Island (sub-Antarctic), eastern Weddell Sea (Antarctica) and the South Shetland Islands (Antarctica). A total of 770 benthic invertebrate samples (corresponding to at least 290 different species) from 12 different phyla were assayed to establish their pharmacological potential against three human tumour cell lines (colorectal adenocarcinoma, lung carcinoma and breast adenocarcinoma). Bioassays resulted in 15 different species showing anticancer activity corresponding to five different phyla: Tunicata (5), Porifera (4), Cnidaria (3), Echinodermata (2) and Annelida (1). This appears to be the largest pharmacological study ever carried out in Antarctica and it shows very promising antitumoural activities in the Antarctic and sub-Antarctic benthos.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amsler, C.D., McClintock, J.B.Baker, B.J. 2000. Chemical defenses of Antarctic marine organisms: a reevaluation of the latitudinal hypothesis. In Davidson, W., Howard-Williams, C. & Broady, P., eds. Antarctic ecosystems: models for wider ecological understanding. Christchurch: Caxton Press, 158164.Google Scholar
Amsler, C.D., Iken, K.B., McClintock, J.B.Baker, B.J. 2001. Secondary metabolites from Antarctic marine organisms and their ecological implications. In McClintock, J.B. & Baker, B.J., eds. Marine chemical ecology. Boca Raton, FL: CRC Press, 267300.Google Scholar
Arntz, W.E.Brey, T. 2005. The Expedition ANTARKTIS XXI/2 (BENDEX) on RV “Polarstern” in 2003/2004. Berichte zur Polarforschung, 503, 1149.Google Scholar
Arntz, W.E., Brey, T.Gallardo, V.A. 1994. Antarctic zoobenthos. Oceanography and Marine Biology: An Annual Review, 32, 241304.Google Scholar
Arntz, W.E., Thatje, S., Linse, K., Avila, C., Ballesteros, M., Barnes, D.K.A., Cope, T., Cristobo, F.J., De Broyer, C., Gutt, J., Isla, E., López-González, P., Montiel, A., Munilla, T., Ramos Esplá, A.A., Raupach, M., Rauschert, M., Rodríguez, E.Teixidó, N. 2006. Missing link in the Southern Ocean: sampling the marine benthic fauna of remote Bouvet Island. Polar Biology, 29, 8396.CrossRefGoogle Scholar
Avila, C., Taboada, S.Núñez-Pons, L. 2008. Antarctic marine chemical ecology: what is next? Marine Ecology, 29, 170.CrossRefGoogle Scholar
Battershill, C.N., Blunt, J.W., Barns, G.Dale, F.M. 1989. Antiviral/antitumour activity in Antarctic marine invertebrate extracts - immediate results. New Zealand Antarctic Record, 9 (2), 5363.Google Scholar
Bergmann, W.Feeney, R.J. 1951. Contributions to the study of marine products. XXXII. The nucleosides of sponges. Journal of Organic Chemistry, 16, 981987.CrossRefGoogle Scholar
Blunt, J.W., Copp, B.R., Hu, W.-P., Munro, M.H.G., Northcote, P.T.Prinsep, M.R. 2007. Marine natural products. Natural Products Reports, 24, 3186.CrossRefGoogle ScholarPubMed
Blunt, J.W., Munro, M.H.G., Battershill, C.N., Copp, B.R., McCombs, J.D., Perry, N.B., Prinsep, M.R.Thompson, A.M. 1990. From the Antarctic to the antipodes; 45° of marine chemistry. New Journal of Chemistry, 14, 761775.Google Scholar
Burres, N.S.Clement, J.J. 1989. Antitumor activity and mechanism of action of the novel marine natural products mycalamide-A and -B and onnamide. Cancer Research, 49, 29352940.Google Scholar
Clarke, A.Johnston, N.M. 2003. Antarctic marine chemical diversity. Oceanography and Marine Biology: An Annual Review, 41, 47114.Google Scholar
Dayton, P.K., Robilliard, A.G., Paine, R.T.Dayton, L.B. 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs, 44, 105128.CrossRefGoogle Scholar
De Marino, S., Iorizzi, M., Palagiano, E., Zollo, F.Roussakis, C. 1998. Starfish saponins. 55. Isolation, structure elucidation, and biological activity of the steroid oligoglycosides from an Antarctic starfish of the family Asteriidae. Journal of Natural Products, 61, 13191327.CrossRefGoogle ScholarPubMed
Devlin, J.P. 1997. Chemical diversity and genetic equity: synthetic and naturally derived compounds. In Devlin, J.P., ed. High throughput screening. New York: Dekker, 348.CrossRefGoogle Scholar
Dietzman, G.R. 1996. The marine environment as a discovery resource. In Devlin, J.P., ed. High throughput screening. New York: Dekker, 99144.Google Scholar
Diyabalanage, T., Amsler, C.D., McClintock, J.B.Baker, B.J. 2006. Palmerolide A, a cytotoxic macrolide from the Antarctic tunicate Synoicum adareanum. Journal of the American Chemical Society, 128, 56305631.CrossRefGoogle ScholarPubMed
Faulkner, D.J., Harper, M.K., Haygood, M.G., Salomon, C.E.Schmidt, E.W. 2000. Symbiotic bacteria in sponges: sources of bioactive substances. In Fusetani, N., ed. Drugs from the sea. Basel: Karger, 107119.CrossRefGoogle Scholar
Fontana, A., Ciavatta, M.L., Amodeo, P.Cimino, G. 1999. Single solution phase conformation of new antiproliferative cembranes. Tetrahedron, 55, 11431152.CrossRefGoogle Scholar
Furrow, F.B., Amsler, C.D., McClintock, J.B.Baker, B.J. 2003. Surface sequestration of chemical feeding deterrents in the Antarctic sponge Latrunculia apicalis as an optimal defense against sea star spongivory. Marine Biology, 143, 443449.CrossRefGoogle Scholar
Gutt, J., Sirenko, B.I., Smirnov, I.S.Arntz, W.E. 2004. How many macrozoobenthic species might inhabit the Antarctic shelf? Antarctic Science, 16, 1116.CrossRefGoogle Scholar
Haefner, B. 2003. Drugs from the deep: marine natural products as drug candidates. Drug Discovery Today, 8, 536544.CrossRefGoogle ScholarPubMed
Harvey, A.L. 2007. Natural products as a screening resource. Current Opinion in Chemical Biology, 11, 480484.CrossRefGoogle ScholarPubMed
Hooper, G.J., Davies-Coleman, M.T., Kelly-Borges, M.Coetzee, P.S. 1996. New alkaloids from a South African latrunculid sponge. Tetrahedron Letters, 37, 71357138.CrossRefGoogle Scholar
König, G., Kehraus, S., Seibert, S.F., Abdel-Lateff, A.Müller, D. 2006. Natural products from marine organisms and their associated microbes. ChemBioChem, 7, 229238.CrossRefGoogle ScholarPubMed
Lam, K.S. 2007. New aspects of natural products in drug discovery. Trends in Microbiology, 15, 279289.CrossRefGoogle ScholarPubMed
Le Tourneau, C., Raymond, E.Faivre, S. 2007. Aplidine: a paradigm of how to handle the activity and toxicity of a novel marine anticancer poison. Current Pharmacological Design, 13, 34273439.CrossRefGoogle ScholarPubMed
Lebar, M.D., Heimbegner, J.L.Baker, B.J. 2007. Cold-water marine natural products. Natural Product Reports, 24, 774797.CrossRefGoogle ScholarPubMed
Mayer, A.M.S.Gustafson, K.R. 2006. Marine pharmacology in 2003–2004: antitumour and cytotoxic compounds. European Journal of Cancer, 42, 22412270.CrossRefGoogle ScholarPubMed
McClintock, J.B.Baker, B.J. 1997. A review of the chemical ecology of Antarctic marine invertebrates. American Zoologist, 37, 329342.CrossRefGoogle Scholar
McClintock, J.B., Amsler, C.D., Baker, B.J.van Soest, R.W.M. 2005. Ecology of Antarctic marine sponges: an overview. Integrative and Comparative Biology, 45, 359368.CrossRefGoogle ScholarPubMed
McDonald, L.A., Capson, T.L., Krishnamurthy, G., Ding, W.-D., Ellestad, G.A., Bernan, V.S., Maise, W.M., Lassota, P., Discafani, C., Kramer, R.A.Ireland, C.M. 1996. Namenamicin, a new enediyne antitumor antibiotic from the marine ascidian Polysyncraton lithostrotum. Journal of the American Chemical Society, 118, 10 89810 899.CrossRefGoogle Scholar
McKee, T.C., Galinis, D.L., Pannell, L.K., Cardellina, J.H., Laakso, J., Ireland, C.M., Murray, L., Capon, R.J.Boyd, M. 1998. The lobatamides, novel cytotoxic macrolides from southwestern Pacific tunicates. Journal of Organic Chemistry, 63, 78057810.CrossRefGoogle Scholar
Mellado, G.G., Zubía, E., Ortega, M.J.López-González, P.J. 2004. New polyoxygenated steroids from the Antarctic octocoral Dasystenella acanthina. Steroids, 69, 291299.CrossRefGoogle ScholarPubMed
Mellado, G.G., Zubía, E., Ortega, M.J.López-González, P.J. 2005. Steroids from the Antarctic octocoral Anthomastus bathyproctus. Journal of Natural Products, 68, 11111115.CrossRefGoogle ScholarPubMed
Munro, M.H.G., Ludibrand, R.T.Blunt, J.W. 1987. The search for antiviral and anticancer compounds from marine organisms. In Scheuer, P.J., ed. Bioorganic marine chemistry. Berlin: Springer, 93176.CrossRefGoogle Scholar
Munro, M.H.G., Blunt, J.W., Dumdei, E.J., Hickford, S.J.H., Lill, R.E., Li, S., Battershill, C.N.Duckworth, A.R. 1999. The discovery and development of marine compounds with pharmaceutical potential. Journal of Biotechnology, 70, 1525.CrossRefGoogle ScholarPubMed
Newman, D.J.Cragg, G.M. 2007. Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70, 461477.CrossRefGoogle ScholarPubMed
Orejas, C., Gili, J.M., Arntz, W.E., Ros, J.D., López, P.J., Teixidó, N.Filipe, P. 2000. Benthic suspension feeders, key players in Antarctic marine ecosystems? Contributions to Science, 1, 299311.Google Scholar
Paterson, I.Anderson, E.A. 2005. The renaissance of natural products as drug candidates. Science, 310, 451453.CrossRefGoogle ScholarPubMed
Perry, N.B., Blunt, J.W., Munro, M.H.G., Higa, T.Sakai, R. 1988. Discorhabdin D, an antitumor alkaloid from sponges Latrunculia brevis and Prianos sp. Journal of Organic Chemistry, 53, 41274128.CrossRefGoogle Scholar
Perry, N.B., Ettouati, L., Litaudon, M., Blunt, J.W.Munro, M.H.G. 1994. Alkaloids from the Antarctic sponge Kirkpatrickia variolosa. Part 1. Variolin-B, a new antitumour and antiviral compound. Tetrahedron, 50, 39873992.CrossRefGoogle Scholar
Peters, K.J., Amsler, C.D., McClintock, J.B., van Soest, R.W.M.Baker, B.J. 2009. Palatability and chemical defenses of sponges from the western Antarctic Peninsula. Marine Ecology Progress Series, 385, 7785.CrossRefGoogle Scholar
Pettit, G.R. 1991. The bryostatins. In Herz, W., ed. Progress in the chemistry of organic natural products, vol. 57. New York: Springer, 153195.Google Scholar
Pettit, G.R., Herald, C.L., Doubek, D.L.Herald, D.L. 1982. Isolation and structure of bryostatin 1. Journal of the American Chemical Society, 104, 68466848.CrossRefGoogle Scholar
Pettit, G.R., Xu, J.-P., Williams, M.D., Christie, N.D., Doubeck, D.L.Schmidt, J.L. 1994. Isolation and structure of cephalostatins 10 and 11. Journal of Natural Products, 57, 5263.CrossRefGoogle Scholar
Pettit, G.R., Kamano, Y., Herald, C.L., Tuinman, A.A., Boettner, F.E., Kizu, H., Schmidt, J.M., Baczynskyj, L., Tomer, K.B.Bontems, R.J. 1987. The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. Journal of the American Chemical Society, 109, 68836885.CrossRefGoogle Scholar
Reyes, F., Fernández, R., Rodríguez, A., Francesch, A., Taboada, S., Avila, C.Cuevas, C. 2008. Aplicyanins A-F, new cytotoxic bromoindole derivatives from the marine tunicate Aplidium cyaneum. Tetrahedron, 64, 51195123.CrossRefGoogle Scholar
Reyes, F., Martín, R., Rueda, A., Fernández, R., Montalvo, D., Gómez, C.Sánchez-Puelles, J.M. 2004. Discorhabdins I and L, cytotoxic alkaloids from the sponge Latrunculia brevis. Journal of Natural Products, 67, 463465.CrossRefGoogle ScholarPubMed
Rinehart, K.L., Holt, T.G., Fregeau, N.L., Stroh, J.G., Keifer, P.A., Sun, F., Li, L.H.Martin, D.G. 1990. Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. Journal of Organic Chemistry, 55, 45124515.CrossRefGoogle Scholar
Rinehart, K.L., Gloer, J.B., Hughes, R.J., Renis, H.E., McGovern, J.P., Swynenberg, E.B., Stringfellow, B.A., Kuentzel, S.L.Li, L.H. 1981. Didemnins: antiviral and antitumor depsipeptides from a Caribbean tunicate. Science, 212, 933935.CrossRefGoogle ScholarPubMed
Schmitz, F.J., Bowden, B.F.Toth, S.I. 1993. Antitumor and cytotoxic compounds from marine organisms. In Attaway, D.H. & Zaborsky, O.K., eds. Marine biotechnology, pharmaceutical and bioactive natural products. New York: Plenum Press, 197308.CrossRefGoogle Scholar
Simmons, T.L., Andrianasolo, E., McPhail, K., Flatt, P.Gerwick, W.H. 2005. Marine natural products as anticancer drugs. Molecular Cancer Therapeutics, 4, 333342.CrossRefGoogle ScholarPubMed
Trimurtulu, G., Faulkner, D.J., Perry, N.B., Ettouati, L., Litaudon, M., Blunt, J.W., Munro, M.Jameson, G.B. 1994. Alkaloids from the Antarctic sponge Kirkpatrickia variolosa. Part 2. Variolin A and N(3′)-methyl tetrahydrovariolin B. Tetrahedron, 50, 39934000.CrossRefGoogle Scholar
Tripati, A., Backman, J., Elderfield, H.Ferretti, P. 2005. Eocene bipolar glaciation associated with global carbon cycle changes. Nature, 436, 341346.CrossRefGoogle ScholarPubMed
Winston, J.E.Bernheimer, A.W. 1986. Haemolytic activity in an Antarctic bryozoan. Journal of Natural History, 20, 369374.CrossRefGoogle Scholar