Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T14:38:30.028Z Has data issue: false hasContentIssue false

An estimate of the South Georgia diving petrel Pelecanoides georgicus population at Ile de la Possession, Crozet archipelago

Published online by Cambridge University Press:  25 March 2020

Christophe Barbraud*
Affiliation:
Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372, 79360Villiers en Bois, France
Adrien Chaigne
Affiliation:
Réserve Naturelle Nationale des Terres Australes Françaises, TAAF, rue Gabriel Dejean, 97458Saint-Pierre, France
Maxime Loubon
Affiliation:
Réserve Naturelle Nationale des Terres Australes Françaises, TAAF, rue Gabriel Dejean, 97458Saint-Pierre, France
Olivier Lamy
Affiliation:
Réserve Naturelle Nationale des Terres Australes Françaises, TAAF, rue Gabriel Dejean, 97458Saint-Pierre, France
Fabrice Le Bouard
Affiliation:
Réserve Naturelle Nationale des Terres Australes Françaises, TAAF, rue Gabriel Dejean, 97458Saint-Pierre, France

Abstract

Burrow-nesting seabirds constitute an important part of seabird diversity, yet accurate estimates of their abundance are largely lacking, limiting our understanding of their population dynamics and conservation status. We conducted a survey to estimate the number of South Georgia diving petrel (Pelecanoides georgicus) burrows during the 2013–14 breeding season on Ile de la Possession, Crozet archipelago, southern Indian Ocean. We used distance sampling and acoustic playback in order to estimate burrow densities in a priori-selected favourable nesting areas. A total of 855 burrows were detected. The mean altitude of burrows was 601.8 ± 69.4 m. The mean burrow detection distance was 1.77 ± 1.63 m. The burrow density was estimated at 15.649 burrows ha-1 (95% confidence interval (CI): 10.245–23.903) and the slope-corrected total favourable area was 2365.53 ha, which yielded an estimate 37 018 burrows (95% CI: 24 235–56 544). The playback response rate was 15.8 ± 1.3%, and 40.8 ± 1.7% of burrows were occupied or showed signs of occupation. Occupancy rates were low compared to those measured by systematic burrow inspection in other studies. Assuming that laying occurred in 80–93% of the estimated number of burrows, as estimated by previous studies, gives an estimate of 29 614 (95% CI: 19 388–45 235) to 34 426 (95% CI: 22 538–52 585) breeding pairs.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, I.A. 1985. The spread of commensal species of Rattus to oceanic islands and their effects on island avifaunas. In Moors, P.J., ed. Conservation of island birds: case studies for the management of threatened island species. Cambridge: International Council for Bird Preservation, 3581.Google Scholar
Barbraud, C., Delord, K., Marteau, C. & Weimerskirch, H. 2009. Estimates of population size of white-chinned petrels and grey petrels at Kerguelen Islands and sensitivity to fisheries. Animal Conservation, 12, 258265.CrossRefGoogle Scholar
Bart, J., Fligner, M.A., Notz, W.I. & Notz, W. 1998. Sampling and statistical methods for behavioral ecologists. Cambridge: Cambridge University Press, 344 pp.CrossRefGoogle Scholar
Brooke, M. 2004. Albatrosses and petrels across the world. Oxford: Oxford University Press, 552 pp.Google Scholar
Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L. & Thomas, L. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford: Oxford University Press, 448 pp.Google Scholar
Buxton, R.T., Anderson, D., Moller, H., Jones, C.J. & Lyver, P.O. 2015. Release of constraints on nest-site selection in burrow-nesting petrels following invasive rat eradication. Biological Invasions, 17, 14531470.CrossRefGoogle Scholar
Chastel, O., Weimerskirch, H. & Jouventin, P. 1995. Body condition and seabird reproductive performance: a study of three petrel species. Ecology, 76, 22402246.CrossRefGoogle Scholar
Croxall, J.P. & Hunter, I. 1982. The distribution and abundance of burrowing seabirds (Procellariiformes) at Bird Island, South Georgia: II. South Georgia diving petrel Pelecanoides georgicus. BAS Bulletin, No. 56, 6974.Google Scholar
Croxall, J.P., Butchart, S.H.M., Lascelles, B., Stattersfield, A.J., Sullivan, B., Symes, A., et al. 2012. Seabird conservation status, threats and priority actions: a global assessment. Bird Conservation International, 22, 134.CrossRefGoogle Scholar
Derenne, P. & Mougin, J. 1976. Les procellariiformes à nidification hypogée de l'Île aux Cochons (Archipel Crozet, 46°06′S, 50°14′E). Comité National Français des Recherches Antarctiques, 40, 149175.Google Scholar
Despin, B., Mougin, J. & Segonzac, M. 1972. Oiseaux et mammifères de l'ile de l'Est. Comité National Français des Recherches Antarctiques, 31, 1106.Google Scholar
Dias, M.P., Martin, R., Pearmain, E.J., Burfield, I.J., Small, C., Phillips, R.A., et al. 2019. Threats to seabirds: a global assessment. Biological Conservation, 237, 525537.CrossRefGoogle Scholar
Dilley, B.J., Schramm, M. & Ryan, P.G. 2017. Modest increases in densities of burrow-nesting petrels following the removal of cats (Felis catus) from Marion Island. Polar Biology, 40, 625637.CrossRefGoogle Scholar
Fischer, J.H., Debski, I., Taylor, G.A. & Wittmer, H.U. 2017. Assessing the suitability of non-invasive methods to monitor interspecific interactions and breeding biology of the South Georgian diving petrel (Pelecanoides georgicus). Notornis, 64, 1320.Google Scholar
Fischer, J.H., Taylor, G.A., Cole, R., Debski, I., Armstrong, D.P. & Wittmer, H.U. 2020. Population growth estimates of a threatened seabird indicate necessity for additional management following invasive predator eradications. Animal Conservation, 23, 94103CrossRefGoogle Scholar
Frederiksen, M., Edwards, M., Richardson, A.J., Halliday, N.C. & Wanless, S. 2006. From plankton to top predators: bottom-up control of a marine food web across four trophic levels. Journal of Animal Ecology, 75, 12591268.CrossRefGoogle ScholarPubMed
Hunter, I., Croxall, J.P. & Prince, P. 1982. The distribution and abundance of burrowing seabirds (Procellariiformes) at Bird Island, South Georgia: introduction and methods. BAS Bulletin, No. 56, 4967.Google Scholar
Johnstone, G. 1985. Threats to birds on subantarctic islands. In Moors, P.J., ed. Conservation of island birds: case studies for the management of threatened island species. Cambridge: International Council for Bird Preservation, 101121.Google Scholar
Jones, H.P., Tershy, B.R., Zavaleta, E.S., Croll, D.A., Keitt, B.S., Finkelstein, M.E., et al. 2008. Severity of effects of invasive rats on seabirds: a global review. Conservation Biology, 22, 1626.CrossRefGoogle ScholarPubMed
Jouventin, P., Bried, J. & Micol, T. 2003. Insular bird populations can be saved from rats: a long-term experimental study of white-chinned petrels Procellaria aequinoctialis on Ile de la Possession (Crozet archipelago). Polar Biology, 26, 371378.CrossRefGoogle Scholar
Jouventin, P., Mougin, J.L., Stahl, J.C. & Weimerskirch, H. 1985. Comparative biology of the burrowing petrels of the Crozet Islands. Notornis, 32, 157220.Google Scholar
Jouventin, P., Stahl, J., Weimerskirch, H. & Mougin, J. 1984. The seabirds of the French subantarctic islands and Adélie Land, their status and conservation. In Croxall, J.P., Evans, P.G.H. & Schreiber, R.W., eds. Status and conservation of the World's seabirds. Cambridge: International Council for Bird Preservation, 609625.Google Scholar
Lawton, K., Robertson, G., Kirkwood, R., Valencia, J., Schlatter, R. & Smith, D. 2006. An estimate of population sizes of burrowing seabirds at the Diego Ramirez archipelago, Chile, using distance sampling and burrow-scoping. Polar Biology, 29, 229238.CrossRefGoogle Scholar
Marchant, S. & Higgins, P.J. 1990. Handbook of Australian, New Zealand and Antarctic birds. Melbourne: Oxford University Press, 735 pp.Google Scholar
Montevecchi, W.A. 1993. Birds as indicators of change in marine prey stocks. In Furness, R.W. & Greenwood, J.J.D., eds. Birds as monitors of environmental change. London: Chapman & Hall, 217266.CrossRefGoogle Scholar
Parker, G.C. & Rexer-Huber, K. 2016. Guidelines for designing burrowing petrel surveys to improve population estimate precision. Agreement on the Conservation of Albatrosses and Petrels. Available at http://www.acap.aq/en/resources/acap-conservation-guidelines (accessed 12 August 2019).Google Scholar
Payne, M.R. & Prince, P.A. 1979. Identification and breeding biology of the diving petrels Pelecanoides georgicus and P. urinatrix at South Georgia. New Zealand Journal of Zoology, 6, 299318.CrossRefGoogle Scholar
Reyes-Arriagada, R., Campos-Ellwanger, P., Schlatter, R.P. & Baduini, C. 2006. Sooty shearwater (Puffinus griseus) on Guafo Island: the largest seabird colony in the world? Biodiversity and Conservation, 16, 913930.CrossRefGoogle Scholar
Weimerskirch, H., Zotier, R. & Jouventin, P. 1989. The avifauna of the Kerguelen Islands. Emu, 89, 1529.CrossRefGoogle Scholar
Williams, B.K., Nichols, J.D. & Conroy, M.J. 2002. Analysis and management of animal populations. San Diego, CA: Academic Press, 817 pp.Google Scholar