Hostname: page-component-f554764f5-fr72s Total loading time: 0 Render date: 2025-04-22T00:52:09.612Z Has data issue: false hasContentIssue false

Sixty-year trends in sulphur dioxide emissions from anthropogenic ground-based sources in Antarctica

Published online by Cambridge University Press:  02 December 2024

Sergey Kakareka*
Affiliation:
Laboratory on Transboundary Pollution, Institute for Nature Management, National Academy of Sciences of Belarus, Minsk, Belarus

Abstract

Knowledge of trends of pollutants released into the environment is very important for interpreting the observed trends in pollution of natural environments and forecasting their development. This article reconstructs for the first time a series of sulphur dioxide emissions from the main categories of land-based sources of emissions in Antarctica (diesel generators, heating systems, vehicles and waste incineration) over 60 years: from the beginning of the intensive construction of scientific stations in 1960 until 2019. The trends in the sulphur content of fuels and the dynamics of fuel consumption by the main categories of emission sources are taken into account. According to the estimates obtained, total emissions of sulphur dioxide in Antarctica varied in the range of 28.6–161.3 tons. This paper establishes that the greatest levels of sulphur dioxide emissions occurred in the late 1980s–beginning of the 1990s. In subsequent years, there was a rapid reduction in emissions, primarily due to a reduction of the sulphur content of fuels. The rates of reduction of sulphur dioxide emissions for different areas of Antarctica are also shown.

Type
Earth Sciences
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

AP-42. 1975. Compilation of Air Pollutants Emission Factors. Vol. 1. Stationary Point and Area Sources, 2nd edition, 4th supplement. Research Triangle Park, NC: USEPA. Available at https://www..epa.gov/ttn/chief/ap42/Google Scholar
AP-42. 1996. Compilation of Air Pollutants Emission Factors. Vol. 1. Stationary Point and Area Sources. 3.3 Gasoline and Diesel Industrial Engines, 5th edition (GPO 055-000-00500-1). Research Triangle Park, NC: USEPA. Available at https://www..epa.gov/ttn/chief/ap42/ch03/final/c03s03.pdfGoogle Scholar
Australia State of Environment. 2016. Australian Antarctic Program's station environment: Operation indicators. Available at https://soe.environment.gov.au/theme/antarctic-environment/topic/2016/australian-antarctic-programs-station-environment-operationGoogle Scholar
Australia State of Environment. 2022. Antarctica. Environment. Human environment. Available at https://soe.dcceew.gov.au/antarctica/environment/human-environmentGoogle Scholar
Bargagli, R. 2008. Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400, 212226.CrossRefGoogle ScholarPubMed
Boutron, C.F. & Wolff, E.W. 1989. Heavy metal and sulphur emissions to the atmosphere from human activities in Antarctica. Atmospheric Environment 1967, 23, 10.1016/0004-6981(89)90051-6.Google Scholar
COMNAP. 2006. Waste management in Antarctica. Workshop Proceedings. Hobart, Australia. Available at https://www.comnap.aq/wp-content/uploads/2019/12/COMNAP_waste_management_2006.pdGoogle Scholar
COMNAP. 2017b. COMNAP Antarctic Facilities Master List. v.3.1.0. Available at https://github.com/PolarGeospatialCenter/comnap-antarctic-facilitiesGoogle Scholar
Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., et al. 2016. Forty years of improvements in European air quality: regional policy-industry interactions with global impacts. Atmospheric Chemistry and Physics, 16, 10.5194/acp-16-3825-2016.Google Scholar
Crippa, M., Oreggioni, G., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo, E., et al. 2019. Fossil CO2 and GHG emissions of all world countries - 2019 report. EUR 29849 EN. Luxembourg: Publications Office of the European Union.Google Scholar
Diesel Fuel Regulations. 2002. 40 CFR 80 Subpart 1. Available at https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-80#sp40.17.80.iGoogle Scholar
Dubrovin, L.I. & Petrov, V.N. 1971. Scientific stations in Antarctica 1882–1963. [Translated from Russian] Published for the Polar Information Service of the National Science Foundation, Washington, DC, by the Indian National Scientific Documentation Centre, New Delhi. Available at https://www.southpolestation.com/trivia/igy1/DAHLI_IGY003_0047.pdfGoogle Scholar
EMEP/EEA. 2019. EMEP/EEA air pollutant emission inventory guidebook 2019. Technical guidance to prepare national emission inventories. Copenhagen: European Environment Agency. Available at https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-1-energy-industries/viewGoogle Scholar
EPA. 2022. Emission standards. Available at https://dieselnet.com/standards/Google Scholar
EU. 2022. Fuels: automotive diesel duel. Available at https://dieselnet.com/standards/eu/fuel_automotive.phpGoogle Scholar
Fuel Quality Standards. 2019. Automotive diesel. Available at https://www.legislation.gov.au/Details/F2019L00456Google Scholar
GOST R. 2019. GOST R 56163-2019. Air pollutants emission. Methodology of calculation of emission into the atmosphere from stationary diesel engines (new and after major repairs) of various capacities and purposes during their operation. [ГОСТ Р 56163. 2019. Выбросы загрязняющих веществ в атмосферу. Метод расчета выбросов загрязняющих веществ в атмосферу стационарными дизельными установками (новыми и после капитального ремонта) различной мощности и назначения при их эксплуатации]. Available at https://files.stroyinf.ru/Data2/1/4293726/4293726840.pdfGoogle Scholar
Goto-Azuma, K., Hirabayashi, M., Motoyama, H., Miyake, T., Kuramoto, T., Uemura, R., et al. 2019. Reduced marine phytoplankton sulphur emissions in the Southern Ocean during the past seven glacials. Nature Communications, 10, 10.1038/s41467-019-11128-6.CrossRefGoogle ScholarPubMed
Graf, H.-F., Shirsat, S.V., Oppenheimer, C., Jarvis, M.J., Podzun, R. & Jacob, D. 2010. Continental scale Antarctic deposition of sulphur and black carbon from anthropogenic and volcanic sources Atmospheric Chemistry and Physics, 10, 24572465.Google Scholar
Haywood, J. & Boucher, O. 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Reviews of Geophysics, 38, 513543.CrossRefGoogle Scholar
Hoesly, R.M, Smith, S.J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., et al. 2018. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11, 10.5194/gmd-11-369-2018.CrossRefGoogle Scholar
Infineum Insight. 2000. Infineum Worldwide Winter Diesel Fuel Quality Survey 2000. Available at https://www.infineuminsight.com/media/1101/infineum-dfs-2000.pdfGoogle Scholar
Infineum Insight. 2018. Infineum Worldwide Winter Diesel Fuel Quality Survey 2018. Available at https://www.infineuminsight.com/media/2228/infineum-wdfqs-2018-v10-14112018.pdfGoogle Scholar
IPCC. 1999. Aviation and the global atmosphere (Penner, J.E., Lister, D.H., Griggs, D.J., Dokken, D.J. & McFarland, M., eds). Prepared in collaboration with the Scientific Assessment Panel to the Montreal Protocol on Substances that Deplete the Ozone Layer. Cambridge: Cambridge University Press. Available at https://archive.ipcc.ch/ipccreports/sres/aviation/index.php?idp=0Google Scholar
Kakareka, S. 2020. Air pollutants and greenhouse gases emission inventory for power plants in the Antarctic. Advances in Polar Science, 31, 10.13679/j.advps.2020.0032.Google Scholar
Kakareka, S. & Kukharchyk, T. 2022. Inventory of unintentional POPs emission from anthropogenic sources in Antarctica. Advances in Polar Science, 33, 10.13679/j.advps.2021.0044.Google Scholar
Kakareka, S. & Salivonchyk, S. 2022. Retrospective modelling of air pollution due to the operation of scientific stations in Antarctica: an experience of reanalysis. Antarctic Science, 34, 10.1017/S0954102021000547.CrossRefGoogle Scholar
Kulandaivelu, E. & Peshin, S.K. 2003. Measurement of total ozone, D-UV radiation, sulphur dioxide and nitrogen dioxide with Brewer spectrophotometer at Maitri, Antarctica during 2000. Mausam, 54, 10.54302/mausam.v54i2.1537CrossRefGoogle Scholar
Kyle, P.R., Meeker, K. & Finnegan, D. 1990. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antarctica. Geophysical Research Letters, 17, 10.1029/GL017i012p02125.CrossRefGoogle Scholar
Liss, P.S., Hatton, A.D., Malin, G., Nightingale, P.D., Turner, S.M. & Liss, P.S. 1997. Marine sulphur emissions [and discussion]. Philosophical Transactions: Biological Sciences, 352, 159169.CrossRefGoogle Scholar
Lugar, R.M. 1993. Results of SO2, NOx, and CO monitoring at McMurdo Station, Antarctica (No. INEL/MISC-94046). Idaho Falls, ID: Idaho National Engineering Lab. Available at https://doi.org/10.2172/10192136Google Scholar
Lugar, R.M. 1994. FY 1994 ambient air monitoring report for McMurdo Station, Antarctica (No. INEL-94/0114). Idaho Falls, ID: Idaho National Engineering Lab. Available at https://doi.org/10.2172/29363CrossRefGoogle Scholar
Mariano, E., Paes, L., Neusa, M. & Alvala, P. 2010. Atmospheric SO2 measurements at the Brazilian Antarctic station. Presented at: 38th COSPAR Scientific Assembly, 1518 July 2010, Bremen, Germany.Google Scholar
National Science Foundation. 1991. Final supplemental environmental impact statement for the US Antarctic Program. Washington, DC: Division of Polar Programs, National Science Foundation.Google Scholar
National Science Foundation. 2019. Final comprehensive environmental evaluation for continuation and modernization of McMurdo Station area activities. Available at https://www.nsf.gov/geo/opp/antarct/treaty/cees/AIMS/Final%20CEE_McMurdo%20Modernization_v8_05Aug2019.pdfGoogle Scholar
Obryk, M.K., Fountain, A.G., Doran, P.T., Lyons, W.B. & Eastman, R. 2018. Drivers of solar radiation variability in the McMurdo Dry Valleys, Antarctica. Scientific Reports, 8, 10.1038/s41598-018-23390-7.CrossRefGoogle ScholarPubMed
Radke, L.F. 1982. Sulphur and sulphate from Mt Erebus. Nature, 299, 710712.CrossRefGoogle Scholar
Ramanathan, V., Crutzen, P.J., Kiehl, J.K. & Rosenfeld, D. 2001. Aerosols, climate, and the hydrological cycle. Science, 294, 21192124.CrossRefGoogle ScholarPubMed
Reis, S., Grennfelt, P., Klimont, Z., Amann, M., ApSimon, H., Hettelingh, J.-P., et al. 2012. Atmospheric science. From acid rain to climate change. Science, 338, 10.1126/science.1226514.Google ScholarPubMed
Savatyugin, L.M. 2001. Russian research in Antarctica (Thirty-first SAE–Fortieth RAE). [Российские исследования в Антарктике (Тридцать первая САЭ–Сороковая РАЭ)]. Hydrometeoizdat, p. iii.Google Scholar
Savatyugin, L.M. 2009. Russian research in Antarctica (Forty-first RAE–Fiftieth RAE). [Российские исследования в Антарктике (Сорок первая РАЭ–Пятидесятая РАЭ)]. Hydrometeoizdat, p. iv.Google Scholar
Savatyugin, L.M. 2019. Russian research in Antarctica (Fifty-first SAE–Fifty-fifth RAE). [Российские исследования в Антарктике (Пятьдесят первая РАЭ–Пятьдесят пятая РАЭ)]. Hydrometeoizdat, p. v.Google Scholar
Savatyugin, L.M. 2021. Russian research in Antarctica (Fifty-sixth RAE–Sixtieth RAE). [Российские исследования в Антарктике (Пятьдесят шестая РАЭ–Шестидесятая РАЭ)]. Hydrometeoizdat, p. vi.Google Scholar
Savatyugin, L.M. & Preobrazhenskaya, M.A. 1999. Russian research in Antarctica (First–Twentieth Soviet Antarctic Expedition) [Российские исследования в Антарктике (Первая–Двадцатая Советская Антарктическая Экспедиция)]. Hydrometeoizdat, p. i.Google Scholar
Savatyugin, L.M. & Preobrazhenskaya, M.A. 2000. Russian research in Antarctica (Twenty-first SAE–Thirtieth SAE). [Российские исследования в Антарктике (Двадцать первая САЭ–Тридцатая САЭ)]. Hydrometeoizdat, p. ii.Google Scholar
Schopp, W., Posch, M., Mylona, S. & Johansson, M. 2003. Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrology and Earth System Science, 7, 436446.CrossRefGoogle Scholar
Secretariat of the Antarctic Treaty. 2004. Comprehensive Environmental Evaluation (CEE) for the upgrading of the Norwegian summer station Troll in Dronning Maud Land, Antarctica, to permanent station. Norwegian Polar Institute. Available at https://www.ats.aq/documents/EIA/8491enTrollFinalCEE(2004).pdfGoogle Scholar
Secretariat of the Antarctic Treaty. 2017. General recommendations from the joint inspections undertaken by Argentina and Chile under Article VII of the Antarctic Treaty and Article 14 of the Environmental Protocol. Available at https://documents.ats.aq/ATCM40/att/ATCM40_att043_e.pdfGoogle Scholar
Secretariat of the Antarctic Treaty. 2022a. Information exchange. Available at https://www.ats.aq/devAS/InformationExchange/ArchivedInformation?lang=eGoogle Scholar
Secretariat of the Antarctic Treaty. 2022b. Inspections database. Available at https://www.ats.aq/devAS/Ats/InspectionsDatabase?lang=eGoogle Scholar
Shafer, W.G. 1967. Five years of nuclear power at McMurdo Station. Antarctic Journal of the United States, 2, 2.Google Scholar
Shirsat, S.V. & Graf, H.F. 2009. An emission inventory of sulfur from anthropogenic sources in Antarctica. Atmospheric Chemistry and Physics, 9, 10.5194/acp-9-3397-2009.Google Scholar
Stoddard, J.L., Jeffries, D.S., Lukewille, A., Clair, T.A., Dillon, P.J., Driscoll, C.T., et al. 1999. Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 401, 575578.CrossRefGoogle Scholar
Sweeney, D., Kyle, P.R. & Oppenheimer, C. 2008. Sulfur dioxide emissions and degassing behavior of Erebus volcano, Antarctica. Journal of Volcanology and Geothermal Research, 177, 725733.CrossRefGoogle Scholar
Tin, T., Fleming, Z.L., Hughes, K.A., Ainley, D.G., Convey, P., Moreno, C.A., et al. 2009. Impacts of local human activities on the Antarctic environment. Antarctic Science, 21, 10.1017/S0954102009001722.CrossRefGoogle Scholar
UK Government. 2014. The Sulphur Content of Liquid Fuels (England and Wales) (Amendment) Regulations 2014. Available at https://www.legislation.gov.uk/uksi/2014/1975Google Scholar
UNECE. 2015. Updated Handbook for the 1979 Convention on Long-range Transboundary Air Pollution and Its Protocols. United Nations, New York and Geneva, ECE/EB.AIR.5, ISBN 92-1-116895-32004. Available at https://unece.org/sites/default/files/2021-06/1512881_E_ECE_EBAIR_131.pdf/ (including amendment of December 2005).Google Scholar
US EPA. 2022. Air pollutant emissions trends data. Available at https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-dataGoogle Scholar
Vestreng, V., Myhre, G., Fagerli, H., Reis, S. & Tarrasón, L. 2007. Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmospheric Chemistry and Physics, 7, 10.5194/acp-7-3663-2007.Google Scholar
WHO. 2000. Air quality guidelines for Europe, 2nd edition. Copenhagen: WHO Regional Office for Europe, WHO regional publications, European series No 91. Available at https://www.who.int/publications/i/item/9789289013581Google Scholar
Wolff, E.W. & Cachier, H. 1998. Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station. Journal of Geophysical Research - Atmospheres, 103, 10.1029/97JD01363.CrossRefGoogle Scholar