Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T01:09:12.516Z Has data issue: false hasContentIssue false

Representation of the Weddell Sea deep water masses in the ocean component of the NCAR-CCSM model

Published online by Cambridge University Press:  10 February 2009

Rodrigo Kerr*
Affiliation:
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96201-900, Brazil
Ilana Wainer
Affiliation:
Laboratório de Meteorologia Marinha, Dept. de Oceanografia Física, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, SP, 05508-120, Brazil
Mauricio M. Mata
Affiliation:
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96201-900, Brazil

Abstract

We examine Weddell Sea deep water mass distributions with respect to the results from three different model runs using the oceanic component of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM). One run is inter-annually forced by corrected NCAR/NCEP fluxes, while the other two are forced with the annual cycle obtained from the same climatology. One of the latter runs includes an interactive sea-ice model. Optimum Multiparameter analysis is applied to separate the deep water masses in the Greenwich Meridian section (into the Weddell Sea only) to measure the degree of realism obtained in the simulations. First, we describe the distribution of the simulated deep water masses using observed water type indices. Since the observed indices do not provide an acceptable representation of the Weddell Sea deep water masses as expected, they are specifically adjusted for each simulation. Differences among the water masses’ representations in the three simulations are quantified through their root-mean-square differences. Results point out the need for better representation (and inclusion) of ice-related processes in order to improve the oceanic characteristics and variability of dense Southern Ocean water masses in the outputs of the NCAR-CCSM model, and probably in other ocean and climate models.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beckmann, A. & Goosse, H. 2003. A parameterization of ice shelf-ocean interaction for climate models. Ocean Modelling, 5, 157170.CrossRefGoogle Scholar
Briegleb, B.P., Bitz, C.M., Hunke, E.C., Lipscomb, W.H., Holland, M.M., Schramm, J.L. & Moritz, R.E. 2004. Scientific description of the sea-ice component in the Community Climate System Model, version three. Boulder, CO: National Center for Atmospheric Research, Technical Note NCAT/TN-463 + STR, 70 pp.Google Scholar
Carmack, E.C. 1977. Water characteristics of the Southern Ocean south of the Polar Front. In Angel, M.A., ed. Voyage of Discovery, George Deacon 70th Anniversary volume. Oxford: Pergamom Press, 1541.Google Scholar
Carmack, E.C. & Foster, T.D. 1975. On the flow of water out of the Weddell Sea. Deep-Sea Research, 22, 711724.Google Scholar
Connolley, W.M. & Bracegirdle, T.J. 2007. An Antarctic assessment of IPCC AR4 coupled models. Geophysical Research Letters, 34, 10.1029/2007GL031648.Google Scholar
Danabasoglu, G. 2004. A comparison of global ocean general circulation model solutions with synchronous and accelerated integration methods. Ocean Modelling, 7, 323341.CrossRefGoogle Scholar
Deacon, G.E.R. 1979. The Weddell Gyre. Deep-Sea Research, 26A, 981995.Google Scholar
Doney, S.C. & Hecht, M.W. 2002. Antarctic bottom water formation and deep-water chlorofluorocarbon distributions in a global ocean climate model. Journal of Physical Oceanography, 32, 16421666.Google Scholar
Fahrbach, E., Rohardt, G., Schröder, M. & Strass, V. 1994. Transport and structure of the Weddell Gyre. Annales Geophysicae, 12, 840855.Google Scholar
Fahrbach, E., Harms, S., Rohardt, G., Schröder, M. & Woodgate, R.A. 2001. Flow of bottom water in the northwestern Weddell Sea. Journal of Geophysical Research, 106, 27612778.Google Scholar
Fahrbach, E., Hoppema, M., Rohardt, G., Schröder, M. & Wisotzki, A. 2004. Decadal-scale variations of water mass properties in the deep Weddell Sea. Ocean Dynamics, 54, 7791.CrossRefGoogle Scholar
Fahrbach, E., Rohardt, G., Scheele, N., Schröder, M., Strass, V. & Wisotzki, A. 1995. Formation and discharge of deep and bottom water in the northwestern Weddell Sea. Journal of Marine Research, 53, 515538.CrossRefGoogle Scholar
Fichefet, T. & Maqueda, M.A.M. 1997. Sensitivity of a global sea-ice model to the treatment of ice thermodynamics and dynamics. Journal of Geophysical Research, 102, 12 60912 643.CrossRefGoogle Scholar
Foldvick, A., Gammelsrod, T. & Torreson, T. 1985. Circulation and water masses on the southern Weddell Sea shelf. Antarctic Research Series, 43, 520.Google Scholar
Foster, T.D. & Carmack, E.C. 1976. Frontal zone mixing and Antarctic bottom water formation in the southern Weddell Sea. Deep-Sea Research, 23, 301317.Google Scholar
Foster, T.D. & Carmack, E.C. 1977. Antarctic bottom water formation in the Weddell Sea. In Dunbar, M.J., ed. Polar oceans. Montreal: Arctic Institute of North America, 167177.Google Scholar
Gent, P.R., Bryan, F., Danabasoglu, G., Doney, S., Holland, W., Large, W. & McWilliams, J.C. 1998. The NCAR Climate System Model global ocean component. Journal of Climate, 11, 12871306.2.0.CO;2>CrossRefGoogle Scholar
Gordon, A.L. 1998. Western Weddell Sea thermohaline stratification. Antarctic Research Series, 75, 215240.Google Scholar
Gordon, A.L & Huber, B.A. 1984. Thermohaline stratification below the southern ocean sea-ice. Journal of Geophysical Research, 89, 641648.Google Scholar
Gordon, A.L., Visbeck, M. & Huber, B. 2001. Export of Weddell Sea deep and bottom water. Journal of Geophysical Research, 106, 90059017.CrossRefGoogle Scholar
Gouretski, V.V. & Danilov, A.I. 1993. Weddell Gyre: structure of the eastern boundary. Deep-Sea Research I, 40, 561582.Google Scholar
Griffies, S., Biastoch, A., Boning, C., Bryan, F., Danabasoglu, G., Chassignet, E.P., England, M., Gerdes, R., Haak, H., Hallberg, R.W., Hazeleger, W., Jungclaus, J., Large, W.G., Madec, G., Pirani, A., Samuels, B.L., Scheinert, M., Sen Gupta, A., Severijns, C.A., Simmons, H.L., Treguier, A.M., Winton, M., Yeager, S. & Yin, J. 2009. Coordinated Ocean-ice reference Experiments (COREs). Ocean Modelling, 26, 146.Google Scholar
Holland, M.M., Bitz, C.M., Hunke, E.C., Lipscomb, W.H. & Schramm, J.R. 2006. Influence of the ice thickness distribution on Polar Climate in CCSM3. Journal of Climate, 19, 23982414.CrossRefGoogle Scholar
Huntley, H.S., Tabak, E.G. & Suh, E.H. 2007. An optimization approach to modeling sea-ice dynamics. Part 1: Lagrangian framework. Journal of Applied Mathematics, 67, 543560.Google Scholar
Karstensen, J. & Tomczak, M. 1997. Ventilation processes and water mass ages in the thermocline of the southeast Indian Ocean. Geophysical Research Letters, 24, 27772780.CrossRefGoogle Scholar
Karstensen, J. & Tomczak, M. 1998. Age determination of mixing water masses using CFC and oxygen data. Journal of Geophysical Research, 103, 18 59918 609.Google Scholar
Kerr, R. 2006. Distribuição, Mistura e Variabilidade das massas de água profundas do Mar de Weddell, Antártica. MSc thesis, Fundação Universidade Federal do Rio Grande (FURG), 146 pp. Available at www.oceanfisquigeo.furg.br/producaoGoogle Scholar
Kerr, R., Mata, M.M. & Garcia, C.A.E. 2005. Optimum multiparameter analysis of the Weddell Sea water mass structure. Clivar Exchanges, 10(4), 3335.Google Scholar
Klatt, O., Fahrbach, E., Hoppema, M. & Rohardt, G. 2005. The transport of the Weddell Gyre across the Prime Meridian. Deep-Sea Research II, 52, 513528.Google Scholar
Large, W.G., McWilliams, J.C. & Doney, S.C. 1994. Oceanic vertical mixing: a review and a model with a non-local boundary layer parameterization. Reviews of Geophysics, 32, 363403.CrossRefGoogle Scholar
Large, W.G., Danabasoglu, G., Doney, S.C. & McWilliams, J.C. 1997. Sensitivity to surface forcing and boundary layer mixing in a global ocean model: annual-mean climatology. Journal of Physical Oceanography, 27, 24182447.2.0.CO;2>CrossRefGoogle Scholar
Large, W. & Yeager, S. 2004. Diurnal to decadal global forcing for ocean and sea-ice models: the datasets and flux climatology. Boulder, CO: CGD Division, National Center for Atmospheric Research, NCAR/TN- 460 + STR.Google Scholar
Large, W.G. & Danabasoglu, G. 2006. Attribution and impacts of upper ocean biases in CCSM3. Journal of Climate, 19, 23252346.Google Scholar
Leffanue, H. & Tomczak, M. 2004. Using OMP analysis to observe temporal variability in water mass distribution. Journal of Marine Research, 48, 314.Google Scholar
Lipscomb, W.H. & Hunke, E.C. 2004. Modeling sea-ice transport using incremental remapping. Monthly Weather Review, 132, 13411354.Google Scholar
Mackas, D.L., Denman, K.L. & Bennett, A.F. 1987. Least squares multiple tracer analysis of water mass composition. Journal of Geophysical Research, 92, 29072918.CrossRefGoogle Scholar
Mamayev, O.I. 1975. Temperature-salinity analysis of world ocean waters. Amsterdam: Elsevier, 374 pp.Google Scholar
OMP2. 2005. Water mass analysis package. Available at http://www.ldeo.columbia.edu/~jkarsten/omp_std/Google Scholar
Orsi, A.H., Nowlin, W.D. & Whitworth, T. 1993. On the circulation and stratification of the Weddell Gyre. Deep-Sea Research I, 40, 169303.CrossRefGoogle Scholar
Orsi, A.H., Johnson, G.C. & Bullister, J.L. 1999. Circulation, mixing, and production of Antarctic bottom water. Progress in Oceanography, 43, 55109.CrossRefGoogle Scholar
Orsi, A.H., Whitworth, T. & Nowlin, W.D. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research I, 42, 641673.Google Scholar
Robertson, R., Visbeck, M., Gordon, A.L. & Fahrbach, E. 2002. Long-term temperature trends in the deep waters of the Weddell Sea. Deep-Sea Research II, 49, 47914806.Google Scholar
Smith, R.D. & Gent, P. 2004. Reference manual for the Parallel Ocean Program (POP), ocean component of the Community Climate System Model (CCSM2.0). Los Alamos, NM: Los Alamos National Laboratory, Technical Report LAUR-02-2484.Google Scholar
Smith, R.D. & McWilliams, J.C. 2003. Anisotropic horizontal viscosity for ocean models. Ocean Modelling, 5, 129156.Google Scholar
Thoma, M., Grosfeld, K. & Lange, M.A. 2006. Impact of the eastern Weddell ice shelves on water masses in the eastern Weddell Sea. Journal of Geophysical Research, 111, 10.1029/2005JC003212.CrossRefGoogle Scholar
Timmermann, R., Hellmer, H.H. & Beckmann, A. 2002. Simulations of ice-ocean dynamics in the Weddell Sea. 2. Interannual variability 1985–1993. Journal of Geophysical Research, 107, 10.1029/2000JC000742.Google Scholar
Tomczak, M. 1981. A multi-parameter extension of temperature/salinity diagram techniques for the analysis of non-isopycnal mixing. Progress in Oceanography, 10, 147171.Google Scholar
Tomczak, M. 1999. Some historical, theoretical and applied aspects of quantitative water mass analysis. Journal of Marine Research, 57, 275303.Google Scholar
Tomczak, M. & Large, D.G.B. 1989. Optimum multiparameter analysis of mixing in the thermocline of the eastern Indian Ocean. Journal of Geophysical Research, 94, 16 14116 149.CrossRefGoogle Scholar
Tomczak, M. & Godfrey, J.S. 1994. Regional oceanography: an introduction. Oxford: Pergamon, 377 pp.Google Scholar
Weppernig, R., Schlosser, P., Khatiwala, S. & Fairbanks, R.G. 1996. Isotope data from Ice Station Weddell: implications for deep water formation in the Weddell Sea. Journal of Geophysical Research, 101, 25 72325 739.CrossRefGoogle Scholar
Yeager, S.G. & Large, W.G. 2007. Observational evidence of winter spice injection. Journal of Physical Oceanography, 37, 28952919.CrossRefGoogle Scholar