Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T16:06:28.221Z Has data issue: false hasContentIssue false

Phosphorus in Antarctic surface marine sediments - chemical speciation in Admiralty Bay

Published online by Cambridge University Press:  19 September 2013

Gláucia B.B. Berbel*
Affiliation:
Laboratório de Nutrientes, Micronutrientes e Traços Nos Oceanos, Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, Cidade Universitária - São Paulo, SP 05508-120, Brazil
Elisabete S. Braga
Affiliation:
Laboratório de Nutrientes, Micronutrientes e Traços Nos Oceanos, Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, Cidade Universitária - São Paulo, SP 05508-120, Brazil

Abstract

This study describes the relation of the phosphorus chemical speciation in surface sediments with input processes in Admiralty Bay, King George Island, Antarctica. The sediments were analysed with a sequential extraction for phosphorus fractionation to measure: exchangeable P (Pexch), iron oxyhydroxide bound P (P-Fe), authigenic P (Auth-P), detrital P (Detrital-P) and organic P (Porg). The study revealed that Detrital-P (39–70%) was the main sedimentary phosphorus forms and Auth-P (40–54%) was the second largest pool. The average percentage of each fraction of P followed the sequence: Detrital-P (41%) > Auth-P (37%) > P-Fe (12%) > Porg = Pexch (5%). Spatial differences in grain size distribution were found. Silt and clay factions were predominant in the inlets, whereas sand and gravel were the main components in Central bay (unofficial name). Values were extremely low for organic carbon (< 0.30%) and total nitrogen (< 0.17%). Total sulfur was lower than 0.15%, except for Mackellar Inlet where values were 1%. The dominance of detrital apatite in the total sedimentary phosphorus demonstrates the importance of terrestrial inputs from ice melting in governing the abundance and speciation of sedimentary phosphorus in the Admiralty Bay sediments.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, L.D., Delaney, M.L. Faul, K.L. 2001. Carbon to phosphorus ratios in sediments. Implications for nutrient cycling. Global Biogeochemical Cycles, 15, 6579.Google Scholar
DeMaster, D.J., Nelson, T.M., Nittrouer, C.A. Harden, S.L. 1987. Biogenic silica and organic carbon accumulation in modern Bransfield Strait sediments. Antarctic Journal, 12, 108110.Google Scholar
Domack, E.W. Ishman, S. 1993. Oceanographic and physiographic controls on modern sedimentation within Antarctic fjords. Geological Society of American Bulletin, 105, 11751189.Google Scholar
Eurachem. 1998. The fitness for purpose of analytical methods. A laboratory guide to method validation and related topics. 1st ed. http://www.eurachem.org/images/stories/Guides/pdf/valid.pdf, 75 pp.Google Scholar
Faul, K.L.P., Anderson, L.D. Delaney, M.L. 2005. Phosphorus distribution in sinking oceanic particulate matter. Marine Chemistry, 97, 307333.Google Scholar
Filippelli, G.M. Delaney, M.L. 1996. Phosphorus geochemistry of equatorial Pacific sediments. Geochimica et Cosmochimica Acta, 60, 14791495.Google Scholar
Grasshoff, K., Ehrhardt, M. Kremeling, K. 1983. Methods of seawater analysis, 2nd ed. Weinhein: Verlag Chemie, 419 pp.Google Scholar
Huerta-Diaz, M.A., Tovaz-Sánchez, A., Fillipelli, G., Latimer, J. Sañudo-Wilhelmy, S.A. 2005. A combined CDB - MAGIC method for the determination of phosphorus associated with sedimentary iron-ox hydroxides. Applied Geochemistry, 20, 21082115.Google Scholar
Ingram, R.L. 1971. Sieve analysis. In Carver, R.E., ed. Procedures in sedimentary petrology. New York: Wiley Interscience, 969.Google Scholar
Khim, B.K. Yoon, H.I. 2003. Postglacial marine environmental changes in Maxwell Bay, King George Island, West Antarctica. Polar Research, 22, 341353.Google Scholar
Kottek, M., Grkieser, J., Beck, C., Rudolf, B. Rubel, F. 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259263.Google Scholar
Kraal, P., Slomp, C.P., Reed, D.C., Reichart, G.-J. Poulton, S.W. 2012. Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea. Biogeosciences, 9, 26032624.Google Scholar
Krom, M.D. Berner, R. 1980. Adsorption of phosphate in anoxic marine sediments. Limnology and Oceanography, 25, 797806.Google Scholar
Lange, P.K., Tenenbaum, D.R., Braga, E.S. Campos, L.S. 2007. Microphytoplankton assemblages in shallow waters at Admiralty Bay (King George Island, Antarctica) during the summer 2002–2003. Polar Biology, 30, 14831492.Google Scholar
Latimer, J.C., Filippelli, G.M., Hendy, I. Newkirk, D.R. 2006. Opal-associated particulate phosphorus: implications for the marine P cycle. Geochimica et Cosmochimica Acta, 70, 38433854.Google Scholar
Monbet, P., Brunskill, G.J., Zagorskis, I. Pfitzner, J.P. 2007. Phosphorus speciation in the sediment and mass balance for the central region of the Great Barrier Reef continental shelf (Australia). Geochimica et Cosmochimica Acta, 71, 27622779.Google Scholar
Pęcherzewski, K. 1980. Distribution and quantity of suspended matter in Admiralty Bay (King George Island, South Shetland Islands). Polish Polar Research, 1, 7582.Google Scholar
Poulton, S.W. Raiswell, R. 2002. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. American Journal of Science, 302, 774805.Google Scholar
Rodrigues, A.R., Maluf, J.C., Braga, E.S. Eichler, B.B. 2010. Recent benthic foraminiferal distribution and related environmental factors in Ezcurra Inlet, King George Island, Antarctica. Antarctic Science, 22, 343360.Google Scholar
Ruttenberg, K.C. 1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37, 14601482.Google Scholar
Ruttenberg, K.C. 2005. The global phosphorus cycle. In Schlesinger, W.H., ed. Treatise of geochemistry, 1st ed., vol. 8. Amsterdam: Elsevier, 585643.Google Scholar
Ruttenberg, K.C. Berner, R.A. 1993. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochimica et Cosmochimica Acta, 57, 9911007.Google Scholar
Ruttenberg, K.C. Goñi, M.A. 1997. Phosphorus distribution, C:N:P ratios, and δ13Coc in arctic, temperate and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter. Marine Geology, 139, 123154.Google Scholar
Sackett, W.M. 1996. Organic carbon in sediments underlying the Ross Ice Shelf. Organic Geochemistry, 9, 135137.Google Scholar
Santos, I.R., Favaro, D.I., Schaefer, C.E.G.R. Silva-Filho, E.V. 2007. Sediment geochemistry in coastal Maritime Antarctica (Admiralty Bay, King George Island): evidence from rare earths and other elements. Marine Chemistry, 107, 464474.Google Scholar
Schenau, S.J., Reichart, G.J. Langer, G.J. 2005. Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments. Geochimica et Cosmochimica Acta, 69, 919931.Google Scholar
Setzer, A.W.O., Francelino, M.R., Schaefer, C.E.G.R., Costa, L.V. Bremer, U.F. 2004. Regime climático na Baía do Almirantado: relações com o ecossistema terrestre. In Schaefer, C., ed. Ecossistemas costeiros e monitoramento ambiental da Antártica Marítima. Minas Gerais: Viçosa, 113.Google Scholar
Simas, F.N.B., Schaefer, C.E.G.R., Albuquerque-Filho, M.R., Francelino, M.R., Fernandes Filho, E.I. Costa, L.M. 2008. Genesis, properties and classification of cryosols from Admiralty Bay, Maritime Antarctica. Geoderma, 144, 116122.Google Scholar
Simões, J.C., Arigony Neto, J. Bremer, U.F. 2003. O uso de mapas Antárticos em publicações. Anais da Academia Brasileira de Ciências, 4, 191197.Google Scholar
Simões, J.C., Dani, N., Bremer, U.F., Aquino, F.E. Arigony-Neto, J. 2004. Small cirque glaciers retreat on Keller Peninsula, Admiralty Bay, King George Island, Antarctica. Brazilian Antarctic Research, 4, 4956.Google Scholar
Slomp, C.P., van Der Gaast, S.J. van Raaporst, W. 1996. Phosphorus binding by poorly crystalline iron oxides in the North Sea sediments. Marine Chemistry, 52, 5573.Google Scholar
Suguio, K. 1973. Introdução à sedimentologia. Universidade de São Paulo: Edgard Blücher, 317 pp.Google Scholar
Turekian, K.K. Wedepohl, K.H. 1961. Distribution of the elements in some major units of the Earth's crust. Geological Society of America Bulletin, 72, 175192.Google Scholar
Van Beusekom, J.E.E. De Jonge, V.N. 1997. Transformation of phosphorus in the Wadden Sea: apatite formation. German Journal of Hydrography, 49, 297305.Google Scholar
Zhang, J.Z. Huang, X.L. 2007. Relative importance of solid-phase phosphorus and iron on the sorption behavior of sediments. Environmental Science and Technology, 41, 27892795.Google Scholar
Zhang, J.Z. Huang, X.L. 2011. Effect of temperature and salinity on phosphate sorption on marine sediments. Environmental Science & Technology, 45, 68316837.Google Scholar
Zhang, J.Z., Fischer, C.J. Ortner, P.B. 2004. Potential availability of sedimentary phosphorus to sediment resuspension in Florida Bay. Global Biogeochemical Cycles, 10.1029/2004GB002255.Google Scholar
Zhang, J.Z., Guo, L. Fischer, C.J. 2010. Abundance and chemical speciation of phosphorus in sediments of the Mackenzie River Delta, the Chukchi Sea and the Bering Sea: importance of detrital apatite. Aquatic Geochemistry, 16, 353371.Google Scholar
Supplementary material: File

Berbel Supplementary Material

Table

Download Berbel Supplementary Material(File)
File 59.9 KB