Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T02:52:28.670Z Has data issue: false hasContentIssue false

Miocene and Plio-Pleistocene foraminiferal assemblages from Seymour Island, Antarctica

Published online by Cambridge University Press:  05 August 2019

Victor C.S. Badaró*
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, São Paulo, 05508-080, Brazil
Setembrino Petri
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, São Paulo, 05508-080, Brazil

Abstract

Here we describe new microfossil assemblages for the Miocene Hobbs Glacier Formation and the first possibly indigenous assemblages for the Plio-Pleistocene Weddell Sea Formation on Seymour Island, West Antarctica. The assemblages are composed mainly of foraminifers, but radiolarians, calcitarchs and poriferan sclerites are also present. For the Hobbs Glacier Formation, we report the foraminifers Bolivina sp., Oolina globosa and Rosalina cf. globularis; and for the Weddell Sea Formation, we report Favulina hexagona, Globigerinita uvula, Globocassidulina cf. subglobosa and Psammosphaera fusca. The low abundance and diversity of microfossils, allied with the complex taphonomical processes that prevailed in Antarctic glacial–marine palaeoenvironments, make it impossible to define whether the assemblages are composed of a mixture of indigenous and re-elaborated specimens or exclusively of re-elaborated remains. Nevertheless, the indigenous nature of some specimens is suggested by their inherent fragility, excellent preservation and/or taxonomic association with indigenous assemblages from correlated strata. The taxonomic compositions are not directly comparable with other Antarctic assemblages, although most of the species were previously reported from pre-Quaternary or modern deposits of both West and East Antarctica. This lack of correspondence is probably due to preservation biases, but any further significance is hidden by the complex taphonomy of the deposits.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badaró, V.C.S.s 2019. Indigenous agglutinated foraminifera from the Eocene La Meseta Formation, Seymour Island, West Antarctica. Polish Polar Research, 40, 129137.Google Scholar
Bart, P.J., Coquereau, L., Warny, S. & Majewski, W. 2016. In situ foraminifera in grounding zone diamict: a working hypothesis. Antarctic Science, 28, 313321.Google Scholar
Berkeley, A., Perry, C.T., Smithers, S.G., Horton, B.P. & Taylor, K.G. 2007. A review of the ecological and taphonomic controls on foraminiferal assemblage development in intertidal environments. Earth-Science Reviews, 83, 205230.Google Scholar
Birkenmajer, K. & Łuczkowska, E. 1987. Foraminiferal evidence for a Lower Miocene age of glaciomarine and related strata, Moby Dick Group, King George Island (South Shetlands Islands, Antarctica). Studia Geologica Polonica, 90, 81123.Google Scholar
Bitner, M.A. 1996. Encrusters and borers of brachiopods from the La Meseta Formation (Eocene) of Seymour Island, Antarctica. Polish Polar Research, 17, 2128.Google Scholar
Caramés, A. & Concheyro, A. 2013. Late Cenozoic foraminifera from diamictites of Cape Lamb, Vega Island, Antarctic Peninsula. Ameghiniana, 50, 114135.Google Scholar
Concheyro, A., Salani, F.M., Adamonis, S. & Lirio, J.M. 2007. Los depósitos diamictíticos cenozoicos de la cuenca James Ross, Antártida: una síntesis estratigráfica y nuevos hallazgos paleontológicos. Revista de la Asociación Geológica Argentina, 62, 568585.Google Scholar
Concheyro, A., Caramés, A., Amenábar, C.R. & Lescano, M. 2014. Nannofossils, foraminifera and microforaminiferal linings in the Cenozoic diamictites of Cape Lamb, Vega Island, Antarctica. Polish Polar Research, 35, 126.Google Scholar
Cornelius, N. & Gooday, A.J. 2004. 'Live' (stained) deep-sea benthic foraminiferans in the western Weddell Sea: trends in abundance, diversity, and taxonomic composition along a depth transect. Deep-Sea Research II, 51, 15711602.Google Scholar
Fütterer, D.K. 1990. Distribution of calcareous dinoflagellates at the Cretaceous–Tertiary boundary of Queen Maud Rise, eastern Weddell Sea, Antarctica (ODP Leg 113). Proceedings of the Ocean Drilling Proigram, Scientific Results, 113, 533548.Google Scholar
Gaździcka, E. & Gaździcki, A. 1994. Recycled Upper Cretaceous calcareous nannoplankton from the Pecten Conglomerate of Cockburn Island, Antarctica. Polish Polar Research, 15, 313.Google Scholar
Gaździcki, A. 1989. Planktonic foraminifera from the Oligocene Polonez Cove Formation of King George Island, West Antarctica. Polish Polar Research, 10, 4755.Google Scholar
Gaździcki, A. & Majewski, W. 2012. Foraminifera from the Eocene La Meseta Formation of Isla Marambio (Seymour island), Antarctic Peninsula. Antarctic Science, 24, 408416.Google Scholar
Gaździcki, A. & Webb, P.N. 1996. Foraminifera from the Pecten conglomerate (Pliocene) of Cockburn Island, Antarctic Peninsula. Palaeontologia Polonica, 55, 147174.Google Scholar
Gaździcki, A., Tatur, A., Hara, U. & Del Valle, R.A. 2004. The Weddell Sea Formation: Post-Late Pliocene terrestrial glacial deposits on Seymour Island, Antarctic Peninsula. Polish Polar Research, 25, 189204.Google Scholar
Gooday, A.J. 2002. Organic-walled allogromiids: aspects of their occurrence, diversity and ecology in marine habitats. Journal of Foraminiferal Research, 32, 384399.Google Scholar
Henning, A. 1910. Le conglomérat Pleistocène à Pecten de l'ile Cockburn. Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition, 1901–03, Geologie und Paläontologie, 3, 173.Google Scholar
Holland, R. 1910. The fossil foraminifera. Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition, 1901–03, Geologie und Paläontologie, 3, 112.Google Scholar
Huber, B.T. 1986. Foraminiferal distribution across the Cetaceous/Tertiary transition on Seymour Island, Antarctic Peninsula. Antarctic Journal of the United States, 21, 7173.Google Scholar
Huber, B.T. 1988. Upper Campanian–Paleocene foraminifera from the James Ross Island region, Antarctic Peninsula. Geological Society of America, Memoir, No. 169, 163252.Google Scholar
Jonkers, H.A., Lirio, J.M., Del Valle, R.A. & Kelley, S.P. 2002. Age and environment of Miocene–Pliocene glaciomarine deposits, James Ross Island, Antarctica. Geological Magazine, 139, 577594.Google Scholar
Lazarus, D. 1990. Middle Miocene to Recent radiolarians from the Weddell Sea, Antarctica, ODP Leg 113. Proceedings of the Ocean Drilling Program, Scientifc Results, 113, 709727.Google Scholar
Lazarus, D., Faust, K. & Popova-Goll, I. 2005. New species of prunoid radiolarians from the Antarctic Neogene. Journal of Micropaleontology, 24, 97121.Google Scholar
Leckie, R.M. & Webb, P.N. 1986. Late Paleogene and early Neogene foraminifers of Deep Sea Drilling Project site 270, Ross Sea, Antarctica. Initial Reports of the Deep Sea Drilling Project, 90, 10931142.Google Scholar
Li, Q., Radford, S.S. & Banner, F.T. 1992. Distribution of microperforate tenuitellid planktonic foraminifers in holes 747A and 749B, Kerguelen Plateau. Proceedings of the Ocean Drilling Program, Scientifc Results, 120, 569594.Google Scholar
Majda, A., Majewski, W., Mamos., T., Grabowski, M., Godoi, M.A. & Pawłowski, J. 2018. Variable dispersal histories across the Drake Passage: the case of coastal benthic Foraminifera. Marine Micropaleontology, 140, 8194.Google Scholar
Majewski, W. 2005. Benthic foraminiferal communities: distribution and ecology in Admiralty Bay, King George Island, West Antarctica. Polish Polar Research, 26, 159214.Google Scholar
Majewski, W. 2010. Benthic foraminifera from West Antarctic fiord environments: an overview. Polish Polar Research, 31, 6182.Google Scholar
Majewski, W. & Gaździcki, A. 2014. Shallow water benthic foraminifera from the Polonez Cove Formation (Lower Oligocene) of King George Island, West Antarctica. Marine Micropaleontology, 111, 114.Google Scholar
Majewski, W., Olempska, E., Kaim, A. & Anderson, J.B. 2012. Rare calcareous microfossils from the Middle Miocene strata, Weddell Sea off Antarctic Peninsula. Polish Polar Research, 33, 275287.Google Scholar
Majewski, W., Tatur, A., Witkowski, J. & Gaździcki, A. 2017. Rich shallow-water benthic ecosystem in Late Miocene East Antarctica (Fisher Bench Fm, Prince Charles Mountains). Marine Micropaleontology, 133, 4049.Google Scholar
Majewski, W., Bart, P.J. & McGlannan, A.J. 2018. Foraminiferal assemblages from the ice-proximal paleo-settings in the Whales Deep Basin, eastern Ross Sea, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 493, 6481.Google Scholar
Malagnino, E.C., Olivero, E.B., Rinaldi, C.A. & Spikermann, Y.J.P. 1981. Aspectos geomórfologicos de la Isla Vicecomodoro Marambio, Antártida. VIII Congreso Geológico Argentino (San Luis). Actas II, 883896.Google Scholar
Marenssi, S.A., Casadío, S. & Santillana, S.N. 2010. Record of Late Miocene glacial deposits on Isla Marambio (Seymour Island), Antarctic Peninsula. Antarctic Science, 22, 193198.Google Scholar
McClintock, J.B., Amsler, C.D., Baker, B.J. & van Soest, R.W.M. 2005. Ecology of Antarctic marine sponges: an overview. Integrative and Comparative Biology, 45, 359368.Google Scholar
Montes, M., Nozal, F., Santillana, S., Marenssi, S. & Olivero, E. 2013. Mapa geológico de la Isla Marambio (Seymour). Escala 1:20.000. Buenos Aires: Instituto Geológico y Minero de España/Instituto Antártico Argentino.Google Scholar
Pirrie, D., Crame, J.A., Riding, J.B., Butcher, A.R. & Taylor, P.D. 1997. Miocene glaciomarine sedimentation in the northern Antarctic Peninsula region: The stratigraphy and sedimentology of the Hobbs Glacier Formation, James Ross Island. Geological Magazine, 136, 745762.Google Scholar
Prothro, L.O., Simkins, L.M., Majewski, W. & Anderson, J.B. 2018. Glacial retreat patterns and processes determined from integrated sedimentology and geomorphology records. Marine Geology, 395, 104119.Google Scholar
Quilty, P.G. 2010. Foraminifera from the Late Pliocene sediments of the Heidemann Valley, Vestfold Hills, East Antarctica. Journal of Foraminiferal Research, 40, 193205.Google Scholar
Rocha Campos, A.C., Kuchenbecker, M., Duleba, W., Santos, P.R. & Canile, F.M. 2017. A (tidal-marine) boulder pavement in the late Cenozoic of Seymour Island, West Antarctica: contribution to the palaeogeographical and palaeoclimatic evolution of West Antarctica. Antarctic Science, 29, 555559.Google Scholar
Strong, C.P. & Webb, P.N. 2000. Oligocene and Miocene foraminifera from CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antartica, 7, 461472.Google Scholar
Thomas, F.C. & Murney, M.G. 1985. Techniques for extraction of foraminifers and ostracodes from sediment samples. Canadian Technical Report of Hydrography and Ocean Sciences, 54, 124.Google Scholar
Uriz, M.J. 2002. Family Geodiidae Gray, 1987. In Hooper, J.N.A. & van Soest, R.W.M., eds. Systema Porifera: A guide to the classification of sponges. New York: Kluwer Academic/Plenum Publishers, 134140.Google Scholar
Villa, G. & Wise, S.W. 1998. Quaternary calcareous nannofossils from the Antarctic region. Terra Antarctica, 5, 479484.Google Scholar
Webb, P.N. & Strong, C.P. 1998. Occurrence, stratigraphic distribution and palaeoecology of Quaternary foraminifera from CRP-1. Terra Antartica, 5, 455472.Google Scholar
Webb, P.N. & Strong, C.P. 2000. Pliocene benthic foraminifera from CRP-2 (lithostratigraphic unit 2.2), Victoria Land Basin, Antarctica. Terra Antartica, 7, 453459.Google Scholar
Zinsmeister, W.J. & DeVries, T.J. 1982. Observations on the stratigraphy of the Lower Tertiary Seymour Island Group, Seymour Island, Antarctic Peninsula. Antarctic Journal of the United States, 17, 7172.Google Scholar