Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T02:43:11.980Z Has data issue: false hasContentIssue false

The last deglaciation of Cape Adare, northern Victoria Land, Antarctica

Published online by Cambridge University Press:  02 June 2008

Joanne S. Johnson*
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Claus-Dieter Hillenbrand
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
John L. Smellie
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Sergio Rocchi
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Marie 53, 156126 Pisa, Italy

Abstract

We present two 10Be exposure ages from erratic boulders at Cape Adare, northern Victoria Land. The exposure ages obtained suggest that Cape Adare was covered by ice during the last glacial period, and the younger age points to deglaciation around 16.2 ka. Comparison of our younger 10Be exposure age with published radiocarbon dates for Adélie penguin occupation at Cape Adare suggests that the onset of penguin colonization (at 2–3 kyr before present) lagged behind the deglaciation by at least 11.5 kyr. These observations indicate that penguin colonization did not occur until several thousand years after ice free ground became available.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackert, R.P. & Kurz, M.D. 2004. Age and uplift rates of Sirius Group sediments in the Dominion Range, Antarctica, from surface exposure dating and geomorphology. Global and Planetary Change, 42, 207225.CrossRefGoogle Scholar
Ainley, D.G. 2002. The Adélie penguin: bellwether of climate change. New York: Columbia University Press, 310 pp.CrossRefGoogle Scholar
Anderson, J.B., Shipp, S.S., Lowe, A.L., Wellner, J.S. & Mosola, A.B. 2002. The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review. Quaternary Science Reviews, 21, 4970.CrossRefGoogle Scholar
Baroni, C., Lorenzini, S., Salvatore, M.C. & Olmastroni, S. 2007. Adélie penguins colonization history and paleodiet trends document Holocene environmental changes in Victoria Land (Antarctica). In Cooper, A.K. & Raymond, C.R., eds. Antarctica: a keystone in a changing world - Online Proceedings of the 10th ISAES X. USGS Open-File Report 2007–1047, Extended Abstract 108, 4 pp.Google Scholar
Baroni, C. & Orombelli, G. 1994. Abandoned penguin rookeries as Holocene paleoclimatic indicators in Antarctica. Geology, 22, 2326.2.3.CO;2>CrossRefGoogle Scholar
Bentley, M.J., Fogwill, C.J., Kubik, P.W. & Sugden, D.E. 2006. Geomorphological evidence and cosmogenic 10Be/26Al exposure ages for the Last Glacial Maximum and deglaciation of the Antarctic Peninsula Ice Sheet. Geological Society of America Bulletin, 118, 11491159.CrossRefGoogle Scholar
Bierman, P.R., Marsella, K.A., Patterson, C., Davis, P.T. & Caffee, M. 1999. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island; a multiple nuclide approach. Geomorphology, 27, 2539.CrossRefGoogle Scholar
Bierman, P.R., Caffee, M.W., Davis, T.P., Marsella, K., Pavich, M., Colgan, P., Mickelson, D. & Larsen, J. 2002. Rates and timing of Earth surface processes from in situ-produced cosmogenic Be-10. Reviews in Mineralogy & Geochemistry, 50, 147205.CrossRefGoogle Scholar
Bindschadler, R. 1998. Future of the West Antarctic Ice Sheet. Science, 282, 428429.CrossRefGoogle Scholar
Borg, S.G., Stump, E., Chappell, B.W., Mcculloch, M.T., Wyborn, T., Armstrong, R.L. & Holloway, J.R. 1987. Granitoids of northern Victoria Land, Antarctica: implications of chemical and isotopic variations to regional crustal structure and tectonics. American Journal of Science, 287, 127169.CrossRefGoogle Scholar
Briner, J.P., Axford, Y., Forman, S.L., Miller, G.H. & Wolfe, A.P. 2007. Multiple generations of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology, 35, 887890.CrossRefGoogle Scholar
Conway, H., Hall, B.L., Denton, G.H., Gades, A.M. & Waddington, E.D. 1999. Past and future grounding-line retreat of the West Antarctic Ice Sheet. Science, 286, 280283.CrossRefGoogle ScholarPubMed
Cunningham, W.L., Leventer, A., Andrews, J.T., Jennings, A.E. & Licht, K.J. 1999. Late Pleistocene–Holocene marine conditions in the Ross Sea, Antarctica: evidence from the diatom record. The Holocene, 9, 129139.CrossRefGoogle Scholar
Davis, P.T., Bierman, P.R., Marsella, K.A., Caffee, M.W. & Southon, J.R. 1999. Cosmogenic analysis of glacial terrains in the eastern Canadian Arctic: a test for inherited nuclides and the effectiveness of glacial erosion. Annals of Glaciology, 28, 181188.CrossRefGoogle Scholar
Denton, G.H. & Hughes, T.J. 2002. Reconstructing the Antarctic Ice Sheet at the Last Glacial Maximum. Quaternary Science Reviews, 21, 193202.CrossRefGoogle Scholar
Denton, G.H., Prentice, M.L. & Burckle, L.H. 1991. Cainozoic history of the Antarctic Ice Sheet. In Tingey, R.J., eds. The geology of Antarctica. Oxford: Clarendon Press, 365433.Google Scholar
Domack, E.W., Jacobson, E.A., Shipp, S. & Anderson, J.B. 1999. Late Pleistocene–Holocene retreat of the West Antarctic Ice Sheet system in the Ross Sea: Part 2 - Sedimentologic and stratigraphic signature. Geological Society of America Bulletin, 111, 15171536.2.3.CO;2>CrossRefGoogle Scholar
Emslie, S.D. 2001. Radiocarbon dates from abandoned penguin colonies in the Antarctic Peninsula region. Antarctic Science, 13, 289295.CrossRefGoogle Scholar
Emslie, S.D., Coats, L. & Licht, K. 2007. A 45,000 yr record of Adélie penguins and climate change in the Ross Sea, Antarctica. Geology, 35, 6164.CrossRefGoogle Scholar
Emslie, S.D., Berkman, P.A., Ainley, D.G., Coats, L. & Polito, M. 2003. Late-Holocene initiation of ice-free ecosystems in the southern Ross Sea, Antarctica. Marine Ecology Progress Series, 262, 1925.CrossRefGoogle Scholar
Farmer, G.L., Licht, K., Swope, R.J. & Andrews, J. 2006. Isotopic constraints on the provenance of fine-grained sediment in LGM tills from the Ross Embayment, Antarctica. Earth and Planetary Science Letters, 249, 90107.Google Scholar
Gosse, J.C. & Phillips, F.M. 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews, 20, 14751560.CrossRefGoogle Scholar
Ingólfsson, Ó., Hjort, C., Berkman, P.A., Björk, S., Colhoun, E., Goodwin, I.D., Hall, B., Hirakawa, K., Melles, M., Möller, P. & Prentice, M.L. 1998. Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land. Antarctic Science, 10, 326344.CrossRefGoogle Scholar
Kohl, C.P. & Nishiizumi, K. 1992. Chemical isolation of quartz for measurement of in situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta, 56, 35863587.CrossRefGoogle Scholar
Kyle, P.R. 1990. McMurdo Volcanic Group, Western Ross Embayment. Antarctic Research Series, 48, 1925.Google Scholar
Licht, K.J. 2004. The Ross Sea's contribution to eustatic sea level during meltwater pulse 1A. Sedimentary Geology, 165, 343353.CrossRefGoogle Scholar
Licht, K.J. & Andrews, J.T. 2002. The 14C record of Late Pleistocene ice advance and retreat in the central Ross Sea, Antarctica. Arctic, Antarctic, and Alpine Research, 34, 324333.CrossRefGoogle Scholar
Licht, K.J., Lederer, J.R. & Swope, R.J. 2005. Provenance of LGM glacial till (sand fraction) across the Ross embayment, Antarctica. Quaternary Science Reviews, 24, 14991520.CrossRefGoogle Scholar
Licht, K.J., Dunbar, N.W., Andrews, J.T. & Jennings, A.E. 1999. Distinguishing subglacial till and glacial marine diamictons in the western Ross Sea, Antarctica: implications for a last glacial maximum grounding line. Geological Society of America Bulletin, 111, 91103.2.3.CO;2>CrossRefGoogle Scholar
Mackintosh, A., White, D., Fink, D., Gore, D.B., Pickard, J. & Fanning, P.C. 2007. Exposure ages from mountain dipsticks in Mac. Robertson Land, East Antarctica, indicate little change in ice-sheet thickness since the Last Glacial Maximum. Geology, 35, 551554.CrossRefGoogle Scholar
Margerison, H.R., Phillips, W.M., Stuart, F.M. & Sugden, D.E. 2005. Cosmogenic 3He concentrations in ancient flood deposits from the Coombs Hills, northern Dry Valleys, East Antarctica: interpreting exposure ages and erosion rates. Earth and Planetary Science Letters, 230, 163175.CrossRefGoogle Scholar
Mosola, A.B. & Anderson, J.B. 2006. Expansion and rapid retreat of the West Antarctic Ice Sheet in eastern Ross Sea: possible consequence of over-extended ice streams? Quaternary Science Reviews, 25, 21772196.CrossRefGoogle Scholar
Muller, P., Schmidt-Tomè, M., Kreuzer, H., Thessensohn, F. & Vetter, U. 1991. Cenozoic peralkaline magmatism at the western margin of the Ross Sea, Antarctica. Memorie della Società Geologica Italiana, 46, 315336.Google Scholar
Nishiizumi, K., Kohl, C.P., Arnold, J.R., Klein, J. & Fink, D. 1991. Cosmic ray produced 10Be and 26Al in Antarctic rocks: exposure and erosion rates. Earth and Planetary Science Letters, 104, 440454.CrossRefGoogle Scholar
Oberholzer, P., Baroni, C., Schaefer, J.M., Orombelli, G., Ivy Ochs, S., Kubik, P.W., Baur, H. & Wieler, R. 2003. Limited Pliocene/Pleistocene glaciation in Deep Freeze Range, northern Victoria Land, Antarctica, derived from in situ cosmogenic nuclides. Antarctic Science, 15, 493502.CrossRefGoogle Scholar
Oberholzer, P., Baroni, C., Salvatore, M.C., Baur, H. & Wieler, R. 2008. Dating late Cenozoic erosional surfaces in Victoria Land, Antarctica, with cosmogenic neon in pyroxenes. Antarctic Science, 20, 8998.CrossRefGoogle Scholar
Rossetti, F., Tecce, F., Aldega, L., Brilli, M. & Faccenna, C. 2006. Deformation and fluid flow during orogeny at the palaeo-active margin of Gondwana: the Early Palaeozoic Robertson accretionary complex (north Victoria Land, Antarctica). Journal of Metamorphic Geology, 24, 3353.CrossRefGoogle Scholar
Shipp, S., Anderson, J. & Domack, E. 1999. Late Pleistocene–Holocene retreat of the West Antarctic Ice Sheet system in the Ross Sea: Part 1-Geophysical results. Geological Society of America Bulletin, 111, 14861516.2.3.CO;2>CrossRefGoogle Scholar
Staiger, J.W., Marchant, D.R., Schaefer, J.M., Oberholzer, P., Johnson, J.V., Lewis, A.R. & Swanger, K.M. 2006. Plio–Pleistocene history of Ferrar Glacier, Antarctica: implications for climate and ice sheet stability. Earth and Planetary Science Letters, 243, 489503.CrossRefGoogle Scholar
Stone, J.O. 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research, 105, 23 75323 759.CrossRefGoogle Scholar
Stone, J.O., Balco, G.A., Sugden, D.E., Caffee, M.C., Sass, L.C. III, Cowdery, S.G. & Siddoway, C. 2003. Holocene deglaciation of Marie Byrd Land: West Antarctica. Science, 299, 99102.CrossRefGoogle ScholarPubMed
Thatje, S., Hillenbrand, C.-D., Mackensen, A. & Larter, R.D. 2008. Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology, 89, 682692CrossRefGoogle Scholar
Van Der Wateren, F.M., Dunai, T.J., Van Balen, R.T., Klas, W., Verbers, A.L.L.M., Passchier, S. & Herpers, U. 1999. Contrasting Neogene denudation histories of different structural regions in the Transantarctic Mountains rift flank constrained by cosmogenic isotope measurements. Global and Planetary Change, 23, 145172.CrossRefGoogle Scholar
Wagner, B., Cremer, H., Hultzsch, N., Gore, D.B. & Melles, M. 2004. Late Pleistocene and Holocene history of Lake Terrasovoje, Amery Oasis, East Antarctica, and its climatic and environmental implications. Journal of Paleolimnology 32, 321339.CrossRefGoogle Scholar