Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T16:20:44.828Z Has data issue: false hasContentIssue false

Inter and intraspecific comparisons of the skeletal Mg/Ca ratios of high latitude Antarctic echinoderms

Published online by Cambridge University Press:  13 February 2018

A. Duquette
Affiliation:
Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
K.M. Halanych
Affiliation:
Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
R.A. Angus
Affiliation:
Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
J.B. Mcclintock*
Affiliation:
Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
*
*Corresponding author: [email protected]

Abstract

Echinoderms are vulnerable to ocean acidification because of their high magnesium calcite skeletons. Here, skeletal Mg/Ca ratios were examined within and between individuals of 20 Antarctic echinoderms representative of the asteroids, ophiuroids and echinoids. The highest mean Mg/Ca ratios occurred in the discs and arms (0.111 and 0.110, respectively) of brittle-stars and the lowest in the spines (0.010) of cidaroid sea urchins. Many taxa (11 of 14 species) from the collection sites showed no intraspecific differences in Mg/Ca ratios between given skeletal components. Exceptions were the spines of two regular sea urchins and the skeletal ossicles of the combined arms and disc of a brittle-star. The relationship between skeletal magnesium content and latitude was further evaluated and an inverse correlation was found between Antarctic echinoderm taxa skeletal magnesium content and latitude across 62° to 76°, indicating that the relationship occurs over relatively narrow latitudes. Upon examination of an even narrower range (70–76° latitude), a region where the mineralogy of echinoderm skeletons has not been investigated, the predicted inverse relationship between Mg/Ca ratio and latitude was still observed in sea-stars, but not in brittle-stars or sea urchins.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, A.J., Mackenzie, F.T. & Bates, N.R. 2008. Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Marine Ecology Progress Series, 10.3354/meps07639.Google Scholar
Arntz, W., Brey, T. & Gallardo, V. 1994. Antarctic zoobenthos. In Ansell, A., Gibson, R. & Barnes, M., eds. Oceanography and marine biology: an annual review. London: UCL Press, 241304.Google Scholar
Bednaršek, N., Tarling, G.A, Bakker, D.C.E., Fielding, S., Jones, E.M., Venables, H.J., Ward, P., Kuzirian, A., Lézé, B., Feely, R.A. & Murphy, E.J. 2012. Extensive dissolution of live pteropods in the Southern Ocean. Nature Geoscience, 10.1038/NGEO1635.Google Scholar
Bøggild, O.B. 1930. The shell structure of the mollusks. Det Kongelige Danske Videnskabernes Selskabs Skrifter, Natruvidenskabelig og Mathematisk, Afdeling, 2, 231326.Google Scholar
Byrne, M., Smith, A.M., West, S., Collard, M., Dubois, P., Graba-landry, A. & Dworjanyn, S.A. 2014. Warming influences Mg2+ content, while warming and acidification influence calcification and test strength of a sea urchin. Environmental Science & Technology, 48, 12 62012 627.CrossRefGoogle ScholarPubMed
Caldeira, K. & Wickett, M.E. 2003. Anthropogenic carbon and ocean pH. Nature, 10.1038/425365a.CrossRefGoogle Scholar
Chave, K.E. 1954. Aspects of the biogeochemistry of magnesium. 1. Calcareous marine organisms. The Journal of Geology, 62, 266283.CrossRefGoogle Scholar
Collard, M., Eeckhaut, I., Dehairs, F. & Dubois, P. 2014. Acid–base physiology response to ocean acidification of two ecologically and economically important holothuroids from contrasting habitats, Holothuria scabra and Holothuria parva . Environmental Science and Pollution Research, 21, 13 60213 614.CrossRefGoogle ScholarPubMed
David, B., Choné, T., Mooi, R. & De Ridder, C. 2005. Antarctic Echinoidea. Lichtenstein: ARG Gantner, 275 pp.Google Scholar
Dayton, P.K., Robilliard, G.A., Paine, R.T. & Dayton, L.B. 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs, 44, 105128.CrossRefGoogle Scholar
Fabry, V.J., McClintock, J.B., Mathis, J.T. & Grebmeier, J.M. 2009. Ocean acidification at high latitudes: the bellwether. Oceanography, 22, 160171.CrossRefGoogle Scholar
Gattuso, J.-P., Magnan, A., Bille, R., Cheung, W.W.L., Howes, E.L., Joos, F., Allemand, D., Bopp, L., Cooley, S.R., Eakin, C.M., Hoegh-Guldberg, O., Kelly, R.P., Portner, H.O., Rogers, A.D., Baxter, J.M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila, U.R., Treyer, S. & Turley, C. 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 10.1126/science.aac4722.CrossRefGoogle ScholarPubMed
Gooding, R.A., Harley, C.D. & Tang, E. 2009. Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proceedings of the National Academy of Sciences of the United States of America, 106, 93169321.CrossRefGoogle ScholarPubMed
Grange, L.J. & Smith, C.R. 2013. Megafaunal communities in rapidly warming fjords along the west Antarctic Peninsula: hotspots of abundance and beta diversity. PloS ONE, 10.1371/journal.pone.0077917.CrossRefGoogle ScholarPubMed
Halanych, K. 2014. Underway hydrographic, weather, and ship-state data (JGOFS) from Laurence M. Gould expedition LMG1312 (2013). Palisades, NY: Interdisciplinary Earth Data Alliance, 10.1594/IEDA/320967.Google Scholar
Halanych, K. 2015. Calibrated hydrographic data from the Southern Ocean acquired with a CTD during the Nathaniel B. Palmer expedition NBP1210 (2013). Palisades, NY: Interdisciplinary Earth Data Alliance, 10.1594 /IEDA/319871.Google Scholar
IPCC. 2014. Climate change 2014: synthesis report. Contribution of Working Groups, I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: Intergovernmental Panel on Climate Change, 151 pp.Google Scholar
Kunitake, M.E., Baker, S.P. & Estroff, L.A. 2012. The effect of magnesium substitution on the hardness of synthetic and biogenic calcite. MRS Communications, 2, 113116.CrossRefGoogle Scholar
Lebrato, M., Iglesias-Rodríguez, D., Feely, R.A., Greeley, D., Jones, D.O., Suarez-Bosche, N., Lampitt, R.S., Cartes, J.E., Green, D.R.H. & Alker, B. 2010. Global contribution of echinoderms to the marine carbon cycle: CaCO3 budget and benthic compartments. Ecological Monographs, 80, 441467.CrossRefGoogle Scholar
Lebrato, M., Andersson, A.J., Ries, J.B., Aronson, R.B., Lamare, M.D., Koeve, W., Oschiles, A., Iglesias-Rodriguez, M.D., Thatje, S., Amsler, M., Vos, S.C., Jones, D.O.B., Ruhl, H.A., Gates, A.R. & McClintock, J.B. 2016. Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide. Global Biogeochemical Cycles, 10.1002/2015GB005260.Google Scholar
Mackenzie, F.T., Bischoff, W.D., Bishop, F.C., Loijens, M., Schoonmaker, J. & Wollast, R. 1983. Magnesian calcites; low-temperature occurrence, solubility and solid-solution behavior. Reviews in Mineralogy and Geochemistry, 11, 97144.Google Scholar
Magdans, U. & Hermann, G. 2004. Single crystal structure analysis of sea urchin spine calcites: systematic investigations of the Ca/Mg distribution as a function of habitat of the sea urchin and the sample location in the spine. European Journal of Mineralogy, 16, 261268.CrossRefGoogle Scholar
McClintock, J.B. 1994. The trophic biology of Antarctic shallow-water echinoderms. Marine Ecology Progress Series, 111, 191202.CrossRefGoogle Scholar
McClintock, J.B., Angus, R.A., McDonald, M.R., Amsler, C.D., Catledge, S.A. & Vohra, Y.K. 2009. Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification. Antarctic Science, 21, 449456.CrossRefGoogle Scholar
McClintock, J.B., Amsler, M.O., Angus, R.A., Challener, R.C., Schram, J.B., Amsler, C.D., Mah, C.L., Cuce, J. & Baker, B.J. 2011. The Mg-calcite composition of Antarctic echinoderms: important implications for predicting the impacts of ocean acidification. Journal of Geology, 10.1086/660890.CrossRefGoogle Scholar
McNeil, B.I., & Matear, R.J. 2008. Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2 . Proceedings of the National Academy of Sciences of the United States of America, 105, 18 86018 864.CrossRefGoogle ScholarPubMed
McNeil, B., Tagliabue, A. & Sweeney, C. 2010. A multi-decadal delay in the onset of corrosive ‘acidified’ water in the Ross Sea of Antarctica due to strong air-sea CO2 disequilibrium. Geophysical Research Letters, 10.1029/2010GL044597.Google Scholar
Milliman, J., Müller, G. & Förstner, F. 1974. Marine carbonates. Berlin, Heidelberg: Springer.Google Scholar
Morse, J.W., Andersson, A.J. & Mackenzie, F.T. 2006. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites. Geochimica et Cosmochimica Acta, 70, 58145830.CrossRefGoogle Scholar
Mucci, A. 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science, 10.2475/ajs.283.7.780.Google Scholar
Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G.K., Rodgers, K.B., Sabine, C.L., Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.F., Yamanaka, Y. & Yool, A. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 10.1038/nature04095.Google Scholar
R Development Core Team. 2013. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Ries, J.B. 2004. Effect of ambient Mg/Ca ratio on Mg fractionation in calcareous marine invertebrates: a record of the oceanic Mg/Ca ratio over the Phanerozoic. Geology, 32, 981984.CrossRefGoogle Scholar
Ries, J.B. 2011. Skeletal mineralogy in a high-CO2 world. Journal of Experimental Marine Biology and Ecology, 10.1016/j.jembe.2011.04.006.Google Scholar
Sewell, M.A. & Hofmann, G.E. 2011. Antarctic echinoids and climate change: a major impact on the brooding forms. Global Change Biology, 17, 734744.CrossRefGoogle Scholar
Smith, A.B., Clark, D.E., Lamare, M.D., Winter, D.J. & Byrne, M. 2016. Risk and resilience: variations in magnesium in echinoid skeletal calcite. Marine Ecology Progress Series, 561, 116.CrossRefGoogle Scholar
Weber, J.N. 1969. The incorporation of magnesium into the skeletal calcites of echinoderms. American Journal of Science, 267, 537566.CrossRefGoogle Scholar
Wood, H.L., Spicer, J.I. & Widdicombe, S. 2008. Ocean acidification may increase calcification rates, but at a cost. Proceedings of the Royal Society - Biological Sciences, B275, 17671773.CrossRefGoogle Scholar