Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T08:45:50.892Z Has data issue: false hasContentIssue false

Holocene climate change in the Bransfield Basin, Antarctic Peninsula: evidence from sediment and diatom analysis

Published online by Cambridge University Press:  27 November 2007

David C. Heroy*
Affiliation:
Rice University, Department of Earth Science, MS 126, PO Box 1892, Houston, TX 77251-1892, USA
Charlotte Sjunneskog
Affiliation:
Department of Geology and Environmental Geosciences, Northern Illinois University, Davis Hall, DeKalb, IL 60115, USA
John B. Anderson
Affiliation:
Rice University, Department of Earth Science, MS 126, PO Box 1892, Houston, TX 77251-1892, USA

Abstract

We present the first study from the Bransfield Basin that extends through the Holocene, recording the variable climate history back to the decoupling of the ice sheet from the continental shelf ~10 650 calendar years before present (cal yr bp). Detailed sediment analysis reveals three stratigraphic units in PC-61 concomitant with three sedimentary environments, similar to sedimentary facies reported elsewhere: 1) subglacial, 2) glacial proximal/sub-ice shelf, and 3) open marine. These interpretations are based on a variety of sedimentological criteria, supported by ten AMS radiocarbon dates and detailed diatom analysis. We note two significant volcanic ash layers (tephra) at 3870 and 5500 cal yr bp from nearby Deception Island. Based on diatom assemblage analysis, we identify five separate climate regimes, highlighting a significantly shorter Mid-Holocene Climatic Optimum than reported by other studies (6800–5900 cal yr bp). This period is marked by the highest Eucampia antarctica var. antarctica and Fragilariopsis curta abundance, total diatom abundance, sediment accumulation rates, and low magnetic susceptibility. We also identify a less pronounced Neoglacial period relative to other studies, which includes an increase of Cocconeis/Rhizosolenia spp. assemblage related to unstable surface water conditions. Such observations probably reflect important regional variations in atmospheric or ocean circulation patterns.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.B. 1999. Antarctic marine geology. Cambridge: Cambridge University Press, 289 pp.Google Scholar
Anderson, J.B., Kennedy, D.S., Smith, M.J. & Domack, E.W. 1991. Sedimentary facies associated with Antarctica's floating ice masses. In Anderson, J.B. & Ashley, G.M., eds. Glacial marine sedimentation; paleoclimatic significance. Geological Society of America Special Papers, No. 261, 125.Google Scholar
Anderson, J.B., Kurtz, D.D., Domack, E.W. & Balshaw, K.M. 1980. Glacial and glacial marine sediments of the Antarctic continental shelf. Journal of Geology, 88, 399414.CrossRefGoogle Scholar
Andrews, J.T., Domack, E.W., Cunningham, W.L., Leventer, A., Licht, K.J., Jull, A.J., DeMaster, D.J. & Jennings, A.E. 1999. Problems and possible solutions concerning radiocarbon dating of surface marine sediments, Ross Sea, Antarctica. Quaternary Research, 52, 206216.Google Scholar
Armand, L.K., Crosta, X., Romero, O. & Pichon, J.J. 2005. The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species. Palaeograography, Palaeoclimatology, Palaeoecology, 223, 93126.CrossRefGoogle Scholar
Barker, P.F., Dalziel, W.D. & Storey, B.C. 1991. Tectonic development of the Scotia arc region. In Tingey, R.J., ed. The geology of Antarctica. Oxford: Oxford University Press, 215248.Google Scholar
Banfield, L.A. & Anderson, J.B. 1995. Seismic facies investigation of the late Quaternary glacial history of Bransfield Basin, Antarctica. Antarctic Research Series, 68, 123140.Google Scholar
Bárcena, M.Á., Gersonde, R., Ledesma, S., Fabrés, J., Calafat, A.M., Canals, M., Seirro, J. & Flores, J.A. 1998. Record of Holocene glacial oscillations in Bransfield Basin as revealed by siliceous microfossil assemblages. Antarctic Science, 10, 269285.CrossRefGoogle Scholar
Bárcena, M.Á., Isla, E., Plaza, A., Flores, J.A., Sierro, F.J., Masque, P., Sanchez-Cabeza, J.A. & Palanques, A. 2002. Bioaccumulation record and paleoclimatic significance in the Western Bransfield Strait: the last 2000 years. Deep-Sea Research II, 49, 935950.Google Scholar
Bentley, M.J. & Anderson, J.B. 1998. Glacial and marine geological evidence for the ice sheet configuration in the Weddell Sea–Antarctic Peninsula region during the Last Glacial Maximum. Antarctic Science, 10, 309325.CrossRefGoogle Scholar
Bentley, M.J., Hodgson, D.A., Sugden, D.E., Roberts, S.J., Smith, J.A., Leng, M.J. & Bryant, C. 2005. Early Holocene retreat of the George VI Ice Shelf Antarctic Peninsula. Geology, 33, 173176.CrossRefGoogle Scholar
Brachfeld, S.A., Banerjee, S.K., Guyodo, Y. & Acton, G.D. 2002. A 13,200 year history of century to millennial-scale paleoenvironmental change magnetically recorded in the Palmer Deep, western Antarctic Peninsula. Earth and Planetary Science Letters, 194, 311326.Google Scholar
Brachfeld, S., Domack, E., Kissel, C., Laj, C., Leventer, A., Ishman, S., Gilbert, R., Camerlenghi, A. & Eglinton, L.B. 2003. Holocene history of the Larsen-A Ice Shelf constrained by geomagnetic paleointensity dating. Geology, 31, 749752.Google Scholar
Canals, M., Urgeles, R. & Calafat, A.M. 2000. Deep sea-floor evidence of past ice streams off the Antarctic Peninsula. Geology, 28, 3134.Google Scholar
Canals, M., Casamor, J.L., Urgeles, R., Calafat, A.M., Domack, E.W., Baraza, J., Farran, M. & De Batist, M. 2002. Seafloor evidence of a subglacial sedimentary system off the northern Antarctic Peninsula. Geology, 30, 603606.2.0.CO;2>CrossRefGoogle Scholar
Cook, A.J., Fox, A.J., Vaughan, D.G. & Ferrigno, J.G. 2005. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308, 541544.CrossRefGoogle ScholarPubMed
Crosta, X., Romero, O., Armand, L.K. & Pichon, J.-J. 2005. The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species. Palaeograography, Palaeoclimatology, Palaeoecology, 223, 6692.CrossRefGoogle Scholar
Cunningham, W.L. & Leventer, A. 1998. Diatom assemblages in surface sediments of the Ross Sea: relationship to present oceanographic conditions. Antarctic Science, 10, 134146.CrossRefGoogle Scholar
Cunningham, W.L., Leventer, A., Andrews, J.T., Jennings, A.E. & Licht, K.J. 1999. Late Pleistocene–Holocene marine conditions in the Ross Sea, Antarctica: evidence from the diatom record. The Holocene, 9, 129139.CrossRefGoogle Scholar
Domack, E.W., Jacobson, E.A., Shipp, S.S. & Anderson, J.B. 1999. Late-Pleistocene–Holocene retreat of the West Antarctic Ice Sheet system in the Ross Sea: Part 2 - Sedimentologic and stratigraphic signature. Geological Society of America Bulletin, 111, 15171536.2.3.CO;2>CrossRefGoogle Scholar
Domack, E.W., Leventer, A., Dunbar, R., Taylor, F., Brachfeld, S., Sjunneskog, C. & ODP Leg 178 Scientific Party. 2001. Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic. The Holocene, 11, 19.Google Scholar
Domack, E.W., Leventer, A., Root, S., Ring, J., Williams, E., Carlson, D., Hirshorn, E., Wright, W., Gilbert, R. & Burr, G. 2003. Marine sedimentary record of natural environmental variability and recent warming in the Antarctic Peninsula. Antarctic Research Series, 79, 205224.Google Scholar
Domack, E.W., Duran, D., Leventer, A., Ishman, S., Doane, S., McCallum, S., Amblas, D., Ring, J., Gilbert, R. & Prentice, M. 2005. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature, 436, 681685.CrossRefGoogle Scholar
Dowdeswell, J.A., Whittington, R.J. & Marienfeld, P. 1994. The origin of massive diamicton facies by iceberg rafting and scouring, Scoresby Sound, East Greenland. Sedimentology, 41, 2135.CrossRefGoogle Scholar
Evans, J. & Pudsey, C.J. 2002. Sedimentation associated with Antarctic Peninsula ice shelves: implications for palaeoenvironmental reconstructions of glacimarine sediments. Journal of Geological Society, 159, 233237.Google Scholar
Evans, J., Dowdeswell, J. & Ó Cofaigh, C. 2004. Late Quaternary submarine bedforms and ice-sheet flow in Gerlache Strait and on the adjacent continental shelf, Antarctic Peninsula. Journal of Quaternary Science, 19, 397407.Google Scholar
Fabrés, J., Calafat, A., Canals, M., Bárcena, M.A. & Flores, J.A. 2000. Bransfield Basin fine-grained sediments: late-Holocene sedimentary processes and Antarctic oceanographic conditions. The Holocene, 10, 703718.CrossRefGoogle Scholar
Fleming, E.A. & Thomson, J.W. 1979. Geological map of Northern Graham Land and South Shetland Islands, 1st edition, 500G series, Sheet 2, 1:500000. Cambridge: British Antarctic Survey.Google Scholar
Folk, R.L. & Ward, W.C. 1957. Brazos River bar: a study in the significance of grain-size parameters. Journal of Sedimentary Petrology, 27, 326.Google Scholar
Fryxell, G.A. 1991. Comparison of winter and summer growth stages of the diatom Eucampia antarctica from the Kerguelen Plateau an south of the Antarctic Convergence Zone. Proceedings of the Ocean Drilling Program, scientific results, 119, 675685.Google Scholar
Fryxell, G.A. & Hasle, R.H. 1971. Corethron criophilum Castracane; its distribution and structure. Antarctic Research Series, 4, 335346.Google Scholar
Fryxell, G.A. & Prasad, A.K.S.K. 1990. Eucampia antarctica var. recta (Manguin) stat. nov. (Biddulphiaceae, Bacillariophyceae): life stages at the Weddell Sea ice edge. Phycologia, 29, 2738.Google Scholar
García, M.A., Castro, C.G., Ríos, A.F., Doval, M.D., Rosón, G., Gomis, D. & López, O. 2002. Water masses and distribution of physico-chemical properties in the Western Bransfield Strait and Gerlache Strait during austral summer 1995/96. Deep-Sea Research II, 49, 585602.Google Scholar
González-Casado, J.M., Giner-Robles, J.L. & López-Martinez, J. 2000. Bransfield Basin, Antarctic Peninsula: not a normal back-arc basin. Geology, 28, 10431046.2.0.CO;2>CrossRefGoogle Scholar
Gràcia, E., Canals, M., Farran, M., Prieto, M.J., Sorribas, J. & the GEBRA team. 1996. Morphostructure and evolution of the central and eastern Bransfield basins (NW Antarctic Peninsula). Marine Geophysical Research, 18, 429448.CrossRefGoogle Scholar
Harden, S.L., DeMaster, D.J. & Nittrouer, C.A. 1992. Developing sediment geochronologies for high-latitude continental shelf deposits: a radiochemical approach. Marine Geology, 103, 6997.CrossRefGoogle Scholar
Heroy, D.C. & Anderson, J.B. 2005. Ice-sheet extent of the Antarctic Peninsula region during the Last Glacial Maximum (LGM) - Insights from glacial geomorphology. Geological Society of America Bulletin, 117, 14971512.CrossRefGoogle Scholar
Heinrich, M. 1988. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29, 143152.CrossRefGoogle Scholar
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van den Linden, P.J., Dai, X., Maskell, K. & Johnson, C.A. 2001. Climate change 2001: the scientific basis. Cambridge: Cambridge University Press, 881 pp.Google Scholar
Ingalls, A.E., Anderson, R.F. & Pearson, A. 2004. Radiocarbon dating of diatom-bound organic compounds. Marine Chemistry, 92, 91105.CrossRefGoogle Scholar
Ishman, S.E. & Domack, E.W. 1994. Oceanographic controls on benthic foraminifers from the Bellingshausen margin of the Antarctic Peninsula. Marine Micropaleontology, 24, 119155.CrossRefGoogle Scholar
Ishman, S.E. & Sperling, M.R. 2002. Benthic foraminiferal record of Holocene deep-water evolution in the Palmer Deep, western Antarctic Peninsula. Geology, 30, 435438.Google Scholar
Jeffers, J.D., Anderson, J.B. & Lawver, L.A. 1991, Evolution of the Bransfield Basin, Antarctic Peninsula. International Symposium on Antarctic Earth Sciences, 5, 481485.Google Scholar
Kanfoush, S.L., Hodell, D.A., Charles, C.D., Guilderson, T.P., Mortyn, P.G. & Ninnemann, U.S. 2000. Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation. Science, 288, 18151818.Google Scholar
Kennedy, D.S. & Anderson, J.B. 1989. Glacial-marine sedimentation and Quaternary glacial history of Marguerite Bay, Antarctic Peninsula. Quaternary Research, 31, 255276.CrossRefGoogle Scholar
Khim, B., Yoon, H.I., Kang, C.Y. & Bahk, J.J. 2002. Unstable climate oscillations during the late Holocene in the eastern Bransfield Basin, Antarctic Peninsula. Quaternary Research, 58, 234245.Google Scholar
Klinkhammer, G.P., Chin, C.S., Keller, R.A., Daehlmann, A., Sahling, H., Sarthou, G., Petersen, S., Smith, F. & Wilson, C. 2001. Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica. Earth and Planetary Science Letters, 193, 395407.CrossRefGoogle Scholar
Krebs, W.J. 1987. Ecology of neritic marine diatoms, Arthur Harbor, Antarctica. Micropaleontology, 29, 267297.Google Scholar
Lawver, L.A., Sloan, B.J., Klepeis, K.A. & Von Herzen, R.P. 1996. Migration of an active plate boundary, Scotia Sea; evidence from multibeam bathymetry. EOS, Transactions of the American Geophysical Union, 77, 647.Google Scholar
Leventer, A. 1992. Modern distribution of diatoms in sediments from the George V Coast, Antarctica. Marine Micropaleontology, 19, 315332.CrossRefGoogle Scholar
Leventer, A. & Dunbar, G.B. 1987. Recent diatom flux in McMurdo Sound, Antarctica. Marine Micropaleontology, 12, 4664.Google Scholar
Leventer, A., Williams, D.F. & Kennett, J.P. 1982. Dynamics of the Laurentide ice sheet during the last deglaciation; evidence from the Gulf of Mexico. Earth and Planetary Science Letters, 59, 1117.CrossRefGoogle Scholar
Leventer, A., Domack, E.W., Barkoukis, A., McAndrews, B. & Murray, J. 2002. Laminations from the Palmer Deep: a diatom-based interpretation. Paleoceanography, 17, 115.Google Scholar
Leventer, A., Olson, C., Domack, E., Dunbar, R. & Taylor, F. 2006. Coherence of Southern Ocean floral response to Holocene climate change, EOS, Transactions of the American Geophysical Union, Winter 2006 Ocean Sciences Meeting, www.agu.org/meetings/os06/os06-sessions/os06_OS25H.html.Google Scholar
Leventer, A., Domack, E.W., Ishman, S.E., Brachfeld, S., McClennen, C.E. & Manley, P. 1996. Productivity cycles of 200–300 years in the Antarctic Peninsula region: understanding linkages among the sun, atmosphere, oceans, sea ice, and biota. Geological Society of America Bulletin, 108, 16261644.Google Scholar
Licht, K.J., Dunbar, N.W., Andrews, J.T. & Jennings, A.E. 1999. Distinguishing subglacial till and glacial marine diamictons in the western Ross Sea, Antarctica: implications for a last glacial maximum grounding line. Geological Society of America Bulletin, 111, 91103.Google Scholar
Licht, K.J., Jennings, A.E., Andrews, J.T. & Williams, K.M. 1996. Chronology of late Wisconsin ice retreat from the western Ross Sea, Antarctica: Geology, 24, 223226.Google Scholar
Maddison, E.J., Pike, J., Leventer, A. & Domack, E.W. 2005. Deglacial seasonal and sub-seasonal diatom record from Palmer Deep, Antarctica. Journal of Quaternary Science, 20, 435446.Google Scholar
Mosley-Thompson, E. & Thompson, L.G. 2003. Ice core paleoclimate histories from the Antarctic Peninsula: where do we go from here? Antarctic Research Series, 79, 115127.Google Scholar
Nishimura, A., Tanahashi, M., Tokuhashi, S., Oda, H. & Nakasone, T. 1999. Marine sediment cores from the continental shelf around Anvers Island, Antarctic Peninsula region. Polar Geoscience, 12, 215226.Google Scholar
Ó Cofaigh, C., Pudsey, C.J. & Dowdeswell, J.A. 2002, Evolution of subglacial bedforms along a paleo-ice stream, Antarctic Peninsula continental shelf. Geophysical Research Letters, 29, 14.Google Scholar
Ó Cofaigh, C., Dowdeswell, J.A., Allen, C.S., Hiemstra, J.F., Pudsey, C.J., Evans, J. & Evans, D.J.A. 2005. Flow dynamics and till genesis associated with a marine-based Antarctic palaeo-ice stream. Quaternary Science Reviews, 24, 709740.Google Scholar
Patterson, M., Leventer, A., Drake, A., Domack, E., Buffen, A., Ishman, S., Szymcek, P., Brachfeld, S. & Backman, E. 2005. Mid-Holocene warmth in the Antarctic Peninsula: evidence from the Vega Drift, EOS, Transactions of the American Geophysical Union, Fall 2005 AGU Meeting, http://adsabs.harvard.edu/abs/2005AGUFMPP41A0629P.Google Scholar
Parkinson, C.L. 2002. Trends in the length of the Southern Ocean sea ice season, 1979–1999. Annals of Glaciology, 34, 435440.CrossRefGoogle Scholar
Peel, D.A. 1995. Ice core evidence from the Antarctic Peninsula region. In Bradley, R.S. & Jones, P.D., ed. Climate since AD 1500. New York: Routledge, 446462.Google Scholar
Pichon, J.-J., Labracherie, M., Labeyrie, L.D. & Duprat, J. 1987. Transfer functions between diatom assemblages and surface hydrobiology in the Southern Ocean. Palaeograography, Palaeoclimatology, Palaeoecology, 61, 7995.CrossRefGoogle Scholar
Pope, P.G. & Anderson, J.B. 1992. Late Quaternary glacial history of the northern Antarctic Peninsula's western continental shelf: evidence from the marine record. Antarctic Research Series, 57, 6391.Google Scholar
Powell, R.D., Dawber, M., McInnes, J.N. & Pyne, A.R. 1996. Observations of the grounding-line area at a floating glacier terminus. Annals of Glaciology, 22, 217223.Google Scholar
Prieto, M.J., Ercilla, G., Canals, M. & de Batist, M. 1999. Seismic stratigraphy of the Central Bransfield Basin (NW Antarctic Peninsula): interpretation of deposits and sedimentary processes in a glacio-marine environment. Marine Geology, 157, 4769.CrossRefGoogle Scholar
Pudsey, C.J. & Evans, J. 2001. First survey of Antarctic sub-ice shelf sediments reveals mid-Holocene ice shelf retreat. Geology, 29, 787790.Google Scholar
Pudsey, C.J., Barker, P.F. & Larter, R.D. 1994. Ice sheets retreat from the Antarctic Peninsula shelf. Continental Shelf Research, 14, 16471675.Google Scholar
Pudsey, C.J., Murray, J.W., Appleby, P. & Evans, J. 2006. Ice shelf history from petrographic and foraminiferal evidence, northeast Antarctic Peninsula. Quaternary Science Reviews, 25, 23572379.Google Scholar
Reynolds, J.M. 1981. Distribution of mean annual air temperatures in the Antarctic Peninsula. British Antarctic Survey Bulletin, No. 54, 123133.Google Scholar
Scambos, T., Hulbe, C. & Fahnestock, M. 2003. Climate-induced ice shelf disintegration in the Antarctic Peninsula. Antarctic Research Series, 79, 7992.Google Scholar
Scherer, R.P. 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology, 12, 171179.CrossRefGoogle Scholar
Shevenell, A.E., Domack, E.W. & Kernan, G.M. 1996. Record of Holocene paleoclimate change along the Antarctic Peninsula: evidence from glacial marine sediments, Lallemand Fjord. Papers and Proceedings of the Royal Society of Tasmania, 130, 5564.Google Scholar
Shevenell, A.E. & Kennett, J.P. 2002. Antarctic Holocene climate change: a benthic foraminiferal stable isotope record from Palmer Deep. Paleoceanography, 17, art. no. 1019.CrossRefGoogle Scholar
Shipp, S.S., Anderson, J.B. & Domack, E.W. 1999. Late-Pleistocene–Holocene retreat of the West Antarctic ice-sheet system in the Ross Sea: Part 1 - Geophysical results. Geological Society of America Bulletin, 111, 14861516.2.3.CO;2>CrossRefGoogle Scholar
Shipp, S.S., Wellner, J.S. & Anderson, J.B. 2002. Retreat signature of a polar ice stream: sub-glacial geomorphic features and sediments from the Ross Sea, Antarctica. In Dowdeswell, J.A. & Ó Cofaigh, C., eds. Glacier-influenced sedimentation on high-latitude continental margins. Geological Society of London, Special Publications, 203, 277304.Google Scholar
Sjunneskog, C. & Taylor, F. 2002. Postglacial marine diatom record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098) 1. Total diatom abundance. Paleoceanography, 17, art. no. 8003.Google Scholar
Sjunneskog, C. & Scherer, R.P. 2005. Mixed diatom assemblages in glacigenic sediment from the central Ross Sea, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 218, 287300.Google Scholar
Smetacek, V., Scharek, R., Gordon, L.I., Eicken, H., Fahrbach, E., Rohardt, G. & Moore, S. 1992. Early spring phytoplankton blooms in ice platelet layers of the southern Weddell Sea, Antarctica. Deep-Sea Research, 39, 153168.CrossRefGoogle Scholar
Stickley, C.E., Pike, J., Leventer, A., Dunbar, R., Domack, E.W., Brachfeld, S., Manley, P. & McClennan, C. 2005. Deglacial ocean and climate seasonality in laminated diatom sediments, Mac.Robertson Shelf, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 290310.Google Scholar
Stuiver, M., Reimer, P., Bard, B., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van Der Plicht, J. & Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal bp. Radiocarbon, 40, 10411083.CrossRefGoogle Scholar
Taylor, F., McMinn, A. & Franklin, D. 1997. Distribution of diatoms in surface sediments of Prydz Bay, Antarctica. Marine Micropaleontology, 32, 209229.CrossRefGoogle Scholar
Taylor, F., Whitehead, J. & Domack, E.W. 2001. Holocene paleoclimate change in the Antarctic Peninsula: evidence from the diatom, sedimentary and geochemical record. Marine Micropaleontology, 41, 2543.Google Scholar
Taylor, F. & Sjunneskog, C. 2002. Postglacial marine diatom record of the Palmer Deep, Antarctic Peninsula (ODP Leg 178, Site 1098). Paleoceanography, 17, art. no. 1026.Google Scholar
Thomson, J.W. & Swithinbank, C.W.M. 1985. Tectonic map of the Scotia arc. BAS (Misc) 3, 1:3000000. Cambridge: British Antarctic Survey.Google Scholar
Tokarczyk, R. 1987. Classification of water masses in the Bransfield Strait and southern part of the Drake Passage using a method of statistical multidimensional analysis. Polish Polar Research, 8, 333366.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Mulvaney, R., Dai, J., Lin, P.N., Davis, M.E. & Raymond, C.F. 1994. Climate since AD 1510 on Dyer Plateau, Antarctic Peninsula: evidence for recent climate change. Annals of Glaciology, 20, 420426.CrossRefGoogle Scholar
Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., King, J.C., Pudsey, C.J. & Turner, J. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 243274.Google Scholar
Warner, N.R. & Domack, E.W. 2002. Millennial- to decadal-scale paleoenvironmental change during the Holocene in the Palmer Deep, Antarctica, as recorded to particle size analysis. Paleoceanography, 17, art. no. 8004.Google Scholar
Wellner, J.S., Lowe, A.L. & Anderson, J.B. 2001. Distribution of glacial geomorphic features on the Antarctic continental shelf and correlation with substrate: implications for ice behavior. Journal of Glaciology, 47, 397411.CrossRefGoogle Scholar
Wellner, J.S., Heroy, D.C. & Anderson, J.B. 2006. The Death Mask of the Antarctic Ice Sheet: comparison of glacial geomorphic features across the Continental Shelf. Geomorphology, 75, 157171.Google Scholar
Whitehead, J. & McMinn, A. 1997. Paleodepth determination from Antarctic benthic diatom assemblages. Marine Micropaleontology, 29, 301318.Google Scholar
Whitehead, J., Wotherspoon, S. & Bohaty, S.M. 2005. Minimal Antarctic sea ice during the Pliocene. Geology, 33, 137140.Google Scholar
Yoon, H.I., Park, B.K., Kim, Y. & Kan, C.Y. 2002. Glaciomarine sedimentation and its Paleoclimatic implications on the Antarctic Peninsula shelf over the last 15000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 235254.Google Scholar
Zielinski, U. & Gersonde, R. 1997. Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paleoenvironmental reconstructions. Palaeograography, Palaeoclimatology, Palaeoecology, 129, 213250.Google Scholar