Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T09:12:14.621Z Has data issue: false hasContentIssue false

Epiphytic diatom communities of Terra Nova Bay, Ross Sea, Antarctica: structural analysis and relations to algal host

Published online by Cambridge University Press:  10 January 2013

Roksana Majewska*
Affiliation:
Second University of Naples, 81100 Caserta, Italy
Maria Cristina Gambi
Affiliation:
Stazione Zoologica A. Dohrn, I-80077 Ischia, Naples, Italy
Cecilia Maria Totti
Affiliation:
Marche Polytechnic University, 60121 Ancona, Italy
Mario De Stefano
Affiliation:
Second University of Naples, 81100 Caserta, Italy

Abstract

Epiphytic diatoms are important constituents of the Southern Ocean coastal water ecosystem, being a key element in many of the Antarctic trophic chains. However, only limited information exists relating to these microalgal communities. Here we describe our findings of a study on epiphytic diatoms from Terra Nova Bay (Ross Sea, Antarctica) based on material collected during the summer campaigns spanning from 1990–2004. Observations of diatoms associated with three rhodophyte species (Iridaea cordata (Turner) Bory, Phyllophora antarctica Gepp & Gepp, and Plocamium cartilagineum (L.) Dixon) were carried out with the use of a scanning electron microscope. A total of 73 diatom taxa (32 genera) were distinguished, of which 20 taxa exceeded 3% of total abundance. Cocconeis fasciolata (Ehrenberg) Brown, Navicula perminuta Grunow, and Fragilariopsis nana (Steemann Nielsen) Paasche appeared in every sample. The analysis of similarities (ANOSIM) test as well as non-metric multidimensional scaling analysis indicated the nature of host organism as a major factor influencing associated diatom community structure, whereas depth, site, and time of sampling seemed to be less important. The epizooic communities associated with sessile fauna epiphytic on macroalgae differed significantly from those associated with macroalgal surface. A pronounced difference between the communities epiphytic on various host macroalgae species was also observed, although most of the dissimilarities occurred between diatom taxa of the same growth form.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, I.Y., Chung, H., Kang, J.S.Kang, S.H. 1997. Diatom composition and biomass variability in nearshore waters of Maxwell Bay, Antarctica, during the 1992/1993 austral summer. Polar Biology, 17, 123130.CrossRefGoogle Scholar
Al-Handal, A.Y.Wulff, A. 2008a. Marine epiphytic diatoms from the shallow sublittoral zone in Potter Cove, King George Island, Antarctica. Botanica Marina, 51, 411435.CrossRefGoogle Scholar
Al-Handal, A.Y.Wulff, A. 2008b. Marine benthic diatoms from Potter Cove, King George Island, Antarctica. Botanica Marina, 51, 5168.CrossRefGoogle Scholar
Anderson, M.J., Gorley, R.N.Clarke, K.R. 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth: PRIMER-E, 214 pp.Google Scholar
Bargagli, R. 2004. The Southern Ocean environment: anthropogenic impact and climate change. In Bargagli, R., ed. Antarctic ecosystems: environmental contamination, climate change, and human impact. Berlin: Springer, 83123.Google Scholar
Bortolus, A. 2008. Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. A Journal of the Human Environment, 37, 114118.Google ScholarPubMed
Cefarelli, A.O., Ferrario, M.E., Almandoz, G.O., Atencio, A.G., Akselman, R.Vernet, M. 2010. Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance. Polar Biology, 33, 14631484.CrossRefGoogle Scholar
Clarke, K.R.Gorley, R.N. 2006. PRIMER-E version 6. Plymouth: NERC, Plymouth Marine Laboratory, 91 pp.Google Scholar
Cormaci, M., Furnari, G.Scammacca, B. 1992. The benthic algal flora of Terra Nova Bay (Ross Sea, Antarctica). Botanica Marina, 35, 541552.CrossRefGoogle Scholar
Dayton, P.K., Watson, D., Palmisano, A., Barry, J.P., Oliver, J.S.Rivera, D. 1986. Distribution patterns of benthic microalgal standing stock at McMurdo Sound, Antarctica. Polar Biology, 6, 207213.CrossRefGoogle Scholar
Di Tullio, G.R., Garrison, D.L.Mathot, S.L. 1998. Dimethylosulfoniopropionate in the sea ice algae from the Ross Sea polynya. Antarctic Research Series, 73, 139146.CrossRefGoogle Scholar
Fiala, M.Oriol, L. 1990. Light-temperature interactions on the growth of Antarctic diatoms. Polar Biology, 10, 629636.CrossRefGoogle Scholar
Gambi, M.C., Lorenti, M., Russo, G.F.Scipione, M.B. 1994. Benthic associations of the shallow hard bottoms off Terra Nova Bay, Ross Sea: zonation, biomass and population structure. Antarctic Science, 6, 449462.CrossRefGoogle Scholar
Gambi, M.C., Buia, M.C., Mazzella, L., Lorenti, M.Scipione, M.B. 2000. Spatio-temporal variability in the structure of benthic populations in a physically controlled system off Terra Nova Bay: the shallow hard bottoms. In Faranda, F.M., Guiglielmo, L. & Ionora, A., eds. Ross Sea ecology. Berlin: Springer, 527538.CrossRefGoogle Scholar
Gilbert, N.S. 1991. Primary production by benthic microalgae in nearshore marine sediments of Signy Island, Antarctica. Polar Biology, 11, 339346.CrossRefGoogle Scholar
Hustedt, F. 1958. Diatomeen aus der Antarktis und dem Südatlantik. Deutsche Antarktische Expedition 1938/39, 2, 103191.Google Scholar
Huston, M. 1979. A general hypothesis of species diversity. The American Naturalist, 113, 81101.CrossRefGoogle Scholar
Kang, S.H., Kang, J.S., Lee, S., Chung, K.H., Kim, D.Park, M.G. 2001. Antarctic phytoplankton assemblages in the marginal ice zone of the northwestern Weddell Sea. Journal of Plankton Research, 23, 333352.CrossRefGoogle Scholar
Karsten, U., Schumann, R., Rothe, S., Jung, I.Medlin, L. 2006. Temperature and light requirements for growth of two diatom species (Bacillariophyceae) isolated from an Arctic macroalga. Polar Biology, 29, 476486.CrossRefGoogle Scholar
Kawamura, A.Ichikawa, T. 1984. Distribution of diatoms in a small area in the Indian sector of the Antarctic. Memoirs of National Institute of Polar Research, Special Issue, 32, 2537.Google Scholar
Kruskal, J.B.Wish, M. 1978. Multidimentional scaling. Newbury Park, CA: Sage, 96 pp.CrossRefGoogle Scholar
Lundholm, N.Hasle, G.R. 2008. Are Fragilariopsis cylindrus and Fragilariopsis nana bipolar diatoms? Morphological and molecular analyses of two sympatric species. Nova Hedwigia Beihefte, 133, 231250.Google Scholar
Majewska, R., Zgrundo, A., Lemke, P.De Stefano, M. 2012a. Benthic diatoms of the Vistula River estuary (northern Poland): seasonality, substrata preferences, and the influence of water chemistry. Phycological Research, 60, 119.CrossRefGoogle Scholar
Majewska, R., Gambi, M.C., Totti, C.M., Pennesi, C.De Stefano, M. 2012b. Growth form analysis of epiphytic diatom communities of Terra Nova Bay (Ross Sea, Antarctica). Polar Biology, 10.1007/s00300-012-1240-1.Google Scholar
Mangin, L. 1915. Phytoplancton de l'Antarctique. Deuxiéme Expedition Antarctique Française (1908–1910), commandée par le Dr Jean Charcot. Sciences naturelles: documents scientifiques. Paris: Masson, 95 pp.Google Scholar
Martin, T. 1998. Are microhabitat preferences of coexisting species under selection and adaptive? Ecology, 79, 656670.CrossRefGoogle Scholar
McLachlan, D.H., Brownlee, C., Taylor, A.R., Geider, R.J.Underwood, G.J.C. 2009. Light-induced motile responses of the estuarine benthic diatom Navicula perminuta and Cylindrotheca closterium (Bacillariophyceae). Journal of Phycology, 45, 592599.CrossRefGoogle ScholarPubMed
Mohan, R., Quarshi, A.A., Meloth, T.Sudhakar, M. 2011. Diatoms from the surface waters of the Southern Ocean during the austral summer of 2004. Current Science, 100, 13231327.Google Scholar
Peragallo, M. 1921. Diatomées d'eau douce et diatomées d'eau salée. Deuxiéme Expédition Antarctique Française (1908–1910) commandée par le Dr Jean Charcot. Sciences naturelles: documents scientifiques. Paris: Masson, 98 pp.CrossRefGoogle Scholar
Povero, P., Chiantore, M., Misic, C., Budillon, G.Cattaneo-Vietti, R. 2001. Pelagic-benthic coupling in Adélie Cove (Terra Nova Bay, Antarctica): a strongly land forcing controlled system? Polar Biology, 24, 875882.Google Scholar
Rosso, A.Sanfilippo, R. 2000. Shallow-water bryozoans and serpuloideans from the Ross Sea (Terra Nova Bay, Antarctica). In Faranda, F.M., Guiglielmo, L.&Ionora, A.,eds. Ross Sea ecology. Berlin: Springer, 515526.CrossRefGoogle Scholar
Sabbe, K., Verleyen, E., Hodgson, D.A., Vanhoutte, K.Vyverman, W. 2003. Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East Antarctica. Antarctic Science, 15, 227248.CrossRefGoogle Scholar
Scott, F.J.Thomas, D.P. 2005. Diatoms. In Scott, F.J.&Marchant, H.J.,eds. Antarctic marine protists. Canberra: Australian Biological Resources Study & Hobart: Australian Antarctic Division, 13201.Google Scholar
Spaulding, S.A., van de Vijver, B., Hodgson, D.A., McKnight, D.M., Verleyen, E.Stanish, L. 2010. Diatoms as indicators of environmental changes in Antarctic freshwaters. In Stoermer, E.F.&Smol, J.P.,eds. The diatoms, applications for environmental and earth sciences. New York: Cambridge University Press, 267286.CrossRefGoogle Scholar
Stocchino, C.Lusetti, C. 1990. Prime osservazioni sulle caratteristiche idrologiche e dinamiche di Baia Terra Nova (Mare di Ross, Antartide). Genova: Istituto Idrografico della Marina, F.C. 1132.Google Scholar
Sutherland, D.L. 2008. Surface-associated diatoms from marine habitats at Cape Evans, Antarctica, including the first record of living Eunotogramma marginopunctatum. Polar Biology, 31, 879888.CrossRefGoogle Scholar
Thomas, D.P.Jiang, J. 1986. Epiphytic diatoms of the inshore marine area near Davis Station. Hydrobiologia, 140, 193198.CrossRefGoogle Scholar
Underwood, G.J.C.Provot, L. 2000. Determining the environmental preferences of four estuarine epipelic diatom taxa: growth across a range of salinity, nitrate and ammonium conditions. European Journal of Phycology, 35, 173182.CrossRefGoogle Scholar
Van Heurck, H. 1909. Diatomées. Expédition Antarctique Belge, Résultats du voyage du SY Belgica en 1897–1898–1899 sous de commandement de A de Gerlache de Gomery. Rapports scientifiques. Botanique, 5(2), 1129.Google Scholar
Vanormelingen, P., Verleyen, E.Vyverman, W. 2008. The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodiversity and Conservation, 17, 393405.CrossRefGoogle Scholar
Waring, J., Underwood, G.J.C.Baker, N.R. 2006. Impact of elevated UV-B radiation on photosynthetic electron transport, primary productivity and carbon allocation in estuarine epipelic diatoms. Plant, Cell and Environment, 29, 521534.CrossRefGoogle ScholarPubMed
Webster, N.S., Negri, A.P., Munro, M.M.H.G.Battershill, C.N. 2004. Diverse microbial communities inhabit Antarctic sponges. Environmental Microbiology, 6, 288300.CrossRefGoogle ScholarPubMed
Zacher, K., Hanelt, D., Wiencke, C.Wulff, A. 2007. Grazing and UV radiation effects on an Antarctic intertidal microalgal assemblage: a long-term field study. Polar Biology, 30, 12031212.CrossRefGoogle Scholar
Supplementary material: File

Majewska Supplementary Material

Appendix

Download Majewska Supplementary Material(File)
File 101.4 KB