Hostname: page-component-f554764f5-246sw Total loading time: 0 Render date: 2025-04-21T19:49:23.792Z Has data issue: false hasContentIssue false

A bibliometric analysis of research on the variability of precipitation over the Antarctic Peninsula

Published online by Cambridge University Press:  17 December 2024

Sanjeef Kumr Subramaniam
Affiliation:
National Antarctic Research Centre, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur, Malaysia Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur, Malaysia
Sheeba Nettukandy Chenoli
Affiliation:
Department of Geography, Faculty of Arts and Social Science, Universiti Malaya, Kuala Lumpur, Malaysia
Cheah Wee
Affiliation:
National Antarctic Research Centre, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur, Malaysia Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur, Malaysia
Mohd Fadzil Firdaus Mohd Nor
Affiliation:
National Antarctic Research Centre, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur, Malaysia Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur, Malaysia
Karl Johan Johari Chan
Affiliation:
National Antarctic Research Centre, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur, Malaysia
Peter Convey
Affiliation:
British Antarctic Survey, Natural Environment Research Council, Cambridge, UK Department of Zoology, University of Johannesburg, Johannesburg, South Africa
Geok Yuan Annie Tan
Affiliation:
National Antarctic Research Centre, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur, Malaysia Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur, Malaysia Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
Mohammed Rizman-Idid
Affiliation:
National Antarctic Research Centre, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur, Malaysia Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur, Malaysia
Siti Aisyah Alias*
Affiliation:
National Antarctic Research Centre, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur, Malaysia Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, Kuala Lumpur, Malaysia

Abstract

Regional warming rates experienced in the Antarctic Peninsula since the mid-twentieth century, linked to global climate change, have been amongst the world's fastest. The majority of studies of change in this region have focused on temperature, and while precipitation is also predicted to change (both in form and quantity) in the models, fewer studies have set out to document and test this prediction. In this study, we examined trends in research publications on precipitation variability over the Antarctic Peninsula from 1990 to 2023 using the Web of Science Core Collection database. A total of 86 relevant papers were retained and used to identify patterns in scientific outputs. VOSviewer and Bibliometrix software packages were used to illustrate the subject content of and trends in publications retrieved by key word analysis. Our findings revealed a positive trend in the number of papers published by year. Within the analysed period, research on precipitation variability in the Antarctic Peninsula region was initiated by a study of Turner and colleagues from 1997. The UK and US research communities were the two largest contributors to this field of Antarctic research globally, with their researchers also holding strong positions within international collaborative networks.

Type
Physical Sciences
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Amesbury, M.J., Roland, T.P., Royles, J., Hodgson, D.A., Convey, P., Griffiths, H. & Charman, D.J. 2017. Widespread biological response to rapid warming on the Antarctic Peninsula. Current Biology, 27, 16161622.CrossRefGoogle ScholarPubMed
Andersson, N. 2017. Biology and biodiversity of tardigrades in the world and in Sweden: Current status and future visions. Master's thesis. Umeå: Umeå University, 34 pp.Google Scholar
Barker, P.F., Filippelli, G.M., Florindo, F., Martin, E.E. & Scher, H.D. 2007. Onset and role of the Antarctic Circumpolar Current. Deep Sea Research II - Topical Studies in Oceanography, 54, 23882398.CrossRefGoogle Scholar
Bestley, S., Ropert-Coudert, Y., Bengtson Nash, S., Brooks, C.M., Cotté, C., Dewar, M., et al. 2020. Marine ecosystem assessment for the Southern Ocean: birds and marine mammals in a changing climate. Frontiers in Ecology and Evolution, 8, 566936.CrossRefGoogle Scholar
Boening, C., Lebsock, M., Landerer, F. & Stephens, G. 2012. Snowfall-driven mass change on the East Antarctic Ice Sheet. Geophysical Research Letters, 39, 10.1029/2012GL053316.CrossRefGoogle Scholar
Bozkurt, D., Bromwich, D.H., Carrasco, J. & Rondanelli, R. 2021. Temperature and precipitation projections for the Antarctic Peninsula over the next two decades: contrasting global and regional climate model simulations. Climate Dynamics, 56, 38533874.CrossRefGoogle Scholar
Bromwich, D.H., Nicolas, J.P., Monaghan, A.J., Lazzara, M.A., Keller, L.M., Weidner, G.A. & Wilson, A.B. 2013. Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience, 6, 139145.CrossRefGoogle Scholar
Cannone, N., Convey, P. & Guglielmin, M. 2013. Diversity trends of bryophytes in continental Antarctica. Polar Biology, 36, 259271.CrossRefGoogle Scholar
Carrasco, J. F. & Cordero, R.R. 2020. Analyzing precipitation changes in the northern tip of the Antarctic peninsula during the 1970–2019 period. Atmosphere, 11, 1270.CrossRefGoogle Scholar
Chown, S.L., Leihy, R.I., Naish, T.R., Brooks, C.M., Convey, P., Henley, B.J., et al. 2022. Antarctic climate change and the environment: a decadal synopsis and recommendations for action. Retrieved from https://documents.ats.aq/atcm44/att/atcm44_att111_e.pdfGoogle Scholar
Cimino, M.A., Lynch, H.J., Saba, V.S. & Oliver, M.J. 2016. Projected asymmetric response of Adélie penguins to Antarctic climate change. Scientific Reports, 6, 28785.CrossRefGoogle ScholarPubMed
Clarke, A., Murphy, E.J., Meredith, M.P., King, J.C., Peck, L.S., Barnes, D.K. & Smith, R.C. 2007. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 149166.CrossRefGoogle ScholarPubMed
Clem, K.R., Renwick, J.A., McGregor, J. & Fogt, R.L. 2016. The relative influence of ENSO and SAM on Antarctic Peninsula climate. Journal of Geophysical Research - Atmospheres, 121, 93249341.CrossRefGoogle Scholar
Cobo, M.J., Jürgens, B., Herrero-Solana, V., Martínez, M.A. & Herrera-Viedma, E. 2018. Industry 4.0: a perspective based on bibliometric analysis. Procedia Computer Science, 139, 364371.CrossRefGoogle Scholar
Convey, P. & Peck, L.S. 2019. Antarctic environmental change and biological responses. Science Advances, 5, eaaz0888.CrossRefGoogle ScholarPubMed
Convey, P., Bindschadler, R., Di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D.A., et al. 2009. Antarctic climate change and the environment. Antarctic Science, 21, 541563.CrossRefGoogle Scholar
Convey, P. & Smith, R.L. 2006. Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecology, 182, 110.Google Scholar
Cook, A.J., Holland, P.R., Meredith, M.P., Murray, T., Luckman, A. & Vaughan, D.G. 2016. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353, 283286.CrossRefGoogle ScholarPubMed
Davies, B.J., Carrivick, J.L., Glasser, N.F., Hambrey, M.J. & Smellie, J.L. 2012. Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988–2009. The Cryosphere, 6, 10311048.CrossRefGoogle Scholar
DeConto, R.M. & Pollard, D. 2016. Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597.CrossRefGoogle ScholarPubMed
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. & Lim, W.M. 2021. How to conduct a bibliometric analysis: an overview and guidelines. Journal of Business Research, 133, 285296.CrossRefGoogle Scholar
Ducklow, H.W., Baker, K., Martinson, D.G., Quetin, L.B., Ross, R.M., Smith, R.C., et al. 2007. Marine pelagic ecosystems: the west Antarctic Peninsula. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 6794.CrossRefGoogle ScholarPubMed
Ducklow, H.W., Fraser, W.R., Meredith, M.P., Stammerjohn, S.E., Doney, S.C., Martinson, D.G., et al. 2013. West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography, 26, 190203.CrossRefGoogle Scholar
Ellegaard, O. & Wallin, J.A. 2015. The bibliometric analysis of scholarly production: how great is the impact? Scientometrics, 105, 18091831.CrossRefGoogle ScholarPubMed
Fan, K. & Wang, H. 2004. Antarctic oscillation and the dust weather frequency in North China. Geophysical Research Letters, 31, 10.1029/2004GL019465.CrossRefGoogle Scholar
Fang, K., Chen, D., Guo, Z., Zhao, Y., Frank, D., He, M., et al. 2019. An interdecadal climate dipole between Northeast Asia and Antarctica over the past five centuries. Climate Dynamics, 52, 765775.CrossRefGoogle Scholar
Frieler, K., Meinshausen, M., Schneider von Deimling, T., Andrews, T. & Forster, P. 2011. Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon. Geophysical Research Letters, 38, 10.1029/2010GL045953.CrossRefGoogle Scholar
Figuerola, B., Hancock, A.M., Bax, N., Cummings, V.J., Downey, R., Griffiths, H.J., et al. 2021. A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean. Frontiers in Marine Science, 8, 584445.CrossRefGoogle Scholar
Fountain, A.G., Saba, G., Adams, B., Doran, P., Fraser, W., Gooseff, M., et al. 2014. The impact of a large-scale climate event on Antarctic ecosystem processes. BioScience, 64, 713718.Google Scholar
Glasser, N.F. & Scambos, T.A. 2008. A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. Journal of Glaciology, 54, 316.CrossRefGoogle Scholar
Glime, J.M. 2017. Tardigrades. In Bryophyte ecology, volume 2: bryological interaction. Houghton, MI: Michigan Tech, ch. 5.Google Scholar
Guo, Y.M., Huang, Z.L., Guo, J., Li, H., Guo, X.R. & Nkeli, M.J. 2019. Bibliometric analysis on smart cities research. Sustainability, 11, 3606.CrossRefGoogle Scholar
Hancock, A.M., King, C.K., Stark, J.S., McMinn, A. & Davidson, A.T. 2020. Effects of ocean acidification on Antarctic marine organisms: a meta-analysis. Ecology and Evolution, 10, 44954514.CrossRefGoogle ScholarPubMed
Kawaguchi, S., Atkinson, A., Bahlburg, D., Bernard, K.S., Cavan, E.L., Cox, M.J., et al. 2024. Climate change impacts on Antarctic krill behaviour and population dynamics. Nature Reviews Earth & Environment, 5, 4358.CrossRefGoogle Scholar
Kawaguchi, S., Kurihara, H., King, R., Hale, L., Berli, T., Robinson, J.P., et al. 2011. Will krill fare well under Southern Ocean acidification? Biology Letters, 7, 288291.CrossRefGoogle ScholarPubMed
Khare, N. 2022. Assessing the Antarctic environment from a climate change perspective. New York: Springer International Publishing.CrossRefGoogle Scholar
Koenitz, D., White, N., McCave, I.N. & Hobbs, R. 2008. Internal structure of a contourite drift generated by the Antarctic Circumpolar Current. Geochemistry, Geophysics, Geosystems, 9, 10.1029/2007GC001799.CrossRefGoogle Scholar
Kumar, K., Singh, G.P. & Shekhar, M.S. 2015. The influence of seasonal teleconnection patterns on the Cryosphere of Antarctica and the northwestern Himalaya. International Journal, 2, 8089.Google Scholar
Lee, H.J. & Jin, E.K. 2021. Seasonality and dynamics of atmospheric teleconnection from the tropical Indian Ocean and the Western Pacific to West Antarctica. Atmosphere, 12, 849.CrossRefGoogle Scholar
Li, X., Cai, W., Meehl, G.A., Chen, D., Yuan, X., Raphael, M., et al. (2021). Tropical teleconnection impacts on Antarctic climate changes. Nature Reviews Earth & Environment, 2, 680698.CrossRefGoogle Scholar
Liu, J., Zhu, Z. & Chen, D. 2023. Lowest Antarctic sea ice record broken for the second year in a row. Ocean-Land-Atmosphere Research, 2, 0007.CrossRefGoogle Scholar
Mariani, M. & Fletcher, M.S. 2016. The Southern Annular Mode determines interannual and centennial-scale fire activity in temperate southwest Tasmania, Australia. Geophysical Research Letters, 43, 17021709.CrossRefGoogle Scholar
Marshall, G.J. 2003. Trends in the Southern Annular Mode from observations and reanalyses. Journal of Climate, 16, 41344143.2.0.CO;2>CrossRefGoogle Scholar
Marshall, G.J. 2009. On the annual and semi-annual cycles of precipitation across Antarctica. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29, 22982308.CrossRefGoogle Scholar
Marshall, G.J., Thompson, D.W. & van den Broeke, M.R. 2017. The signature of Southern Hemisphere atmospheric circulation patterns in Antarctic precipitation. Geophysical Research Letters, 44, 1158011589.CrossRefGoogle ScholarPubMed
Mas-Tur, A., Roig-Tierno, N., Sarin, S., Haon, C., Sego, T., Belkhouja, M., et al. 2021. Co-citation, bibliographic coupling and leading authors, institutions and countries in the 50 years of Technological Forecasting and Social Change. Technological Forecasting and Social Change, 165, 120487.CrossRefGoogle Scholar
Mayewski, P.A., Meredith, M.P., Summerhayes, C.P., Turner, J., Worby, A., Barrett, P.J., et al. 2009. State of the Antarctic and Southern Ocean climate system. Reviews of Geophysics, 47, 10.1029/2007RG000231.CrossRefGoogle Scholar
Meehl, G.A., Boer, G.J., Covey, C., Latif, M. & Stouffer, R.J. 2000. The Coupled Model Intercomparison Project (CMIP). Bulletin of the American Meteorological Society, 81, 313318.2.3.CO;2>CrossRefGoogle Scholar
Meredith, M.P., Wallace, M.I., Stammerjohn, S.E., Renfrew, I.A., Clarke, A., Venables, H.J., et al. 2010. Changes in the freshwater composition of the upper ocean west of the Antarctic Peninsula during the first decade of the 21st century. Progress in Oceanography, 87, 127143.CrossRefGoogle Scholar
Meredith, M.P., Venables, H.J., Clarke, A., Ducklow, H.W., Erickson, M., Leng, M.J., et al. 2013. The freshwater system west of the Antarctic Peninsula: spatial and temporal changes. Journal of Climate, 26, 16691684.CrossRefGoogle Scholar
Meredith, M.P., Stammerjohn, S.E., Venables, H.J., Ducklow, H.W., Martinson, D.G., Iannuzzi, R.A., et al. 2017. Changing distributions of sea ice melt and meteoric water west of the Antarctic Peninsula. Deep Sea Research II - Topical Studies in Oceanography, 139, 4057.CrossRefGoogle Scholar
Meredith, M.P., Stammerjohn, S.E., Ducklow, H.W., Leng, M.J., Arrowsmith, C., Brearley, J.A., et al. 2021. Local-and large-scale drivers of variability in the coastal freshwater budget of the western Antarctic Peninsula. Journal of Geophysical Research - Oceans, 126, e2021JC017172.CrossRefGoogle Scholar
McCarthy, A.H., Peck, L.S., Hughes, K.A. & Aldridge, D.C. 2019. Antarctica: the final frontier for marine biological invasions. Global Change Biology, 25, 22212241.CrossRefGoogle ScholarPubMed
Morozov, E.G., Demidov, A.N. & Tarakanov, R.Y. 2008. Transport of Antarctic waters in the deep channels of the Atlantic Ocean. Doklady Earth Sciences, 423, 1286.CrossRefGoogle Scholar
Murphy, E.J., Watkins, J.L., Trathan, P.N., Reid, K., Meredith, M.P., Thorpe, S.E., et al. 2007. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 113148.CrossRefGoogle Scholar
Nicola, L., Notz, D. & Winkelmann, R. 2023. Revisiting temperature sensitivity: how does Antarctic precipitation change with temperature? The Cryosphere, 17, 25632583.CrossRefGoogle Scholar
Pattyn, F. & Morlighem, M. 2020. The uncertain future of the Antarctic Ice Sheet. Science, 367, 13311335.CrossRefGoogle ScholarPubMed
Peck, L.S. 2018. Antarctic marine biodiversity: adaptations, environments and responses to change. In Hawkins, S.J., Evans, A.J., Dale, A.C., Firth, L.B. & Smith, I.P., eds, Oceanography and marine biology. Boca Raton, FL: CRC Press, 1132.Google Scholar
Purich, A. & England, M.H. 2019. Tropical teleconnections to Antarctic sea ice during austral spring 2016 in coupled pacemaker experiments. Geophysical Research Letters, 46, 68486858.CrossRefGoogle Scholar
Reboita, M.S., Ambrizzi, T., Crespo, N.M., Dutra, L.M.M., Ferreira, G.W.D.S., Rehbein, A., et al. 2021. Impacts of teleconnection patterns on South America climate. Annals of the New York Academy of Sciences, 1504, 116153.CrossRefGoogle ScholarPubMed
Rignot, E., Bamber, J.L., van den Broeke, M.R., Davis, C., Li, Y., Van De Berg, W.J. & Van Meijgaard, E. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience, 1, 106110.CrossRefGoogle Scholar
Rintoul, S.R., Balmeseda, M., Cunningham, S., Dushaw, B.D., Garzoli, S., Gordon, A., et al. 2010. Deep circulation and meridional overturning: recent progress and strategy for sustained observations. Presented at: OceanObs’ 09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September.CrossRefGoogle Scholar
Rondanelli, R., Hatchett, B., Rutllant, J., Bozkurt, D. & Garreaud, R. 2019. Strongest MJO on record triggers extreme Atacama rainfall and warmth in Antarctica. Geophysical Research Letters, 46, 34823491.CrossRefGoogle Scholar
Saraux, C., Le Bohec, C., Durant, J.M., Viblanc, V.A., Gauthier-Clerc, M., Beaune, D., et al. 2011. Reliability of flipper-banded penguins as indicators of climate change. Nature, 469, 203206.CrossRefGoogle ScholarPubMed
Salzmann, M. 2016. Global warming without global mean precipitation increase? Science Advances, 2, e1501572.CrossRefGoogle ScholarPubMed
Schneider, D.P., Okumura, Y. & Deser, C. 2012. Observed Antarctic interannual climate variability and tropical linkages. Journal of Climate, 25, 40484066.CrossRefGoogle Scholar
Siegert, M., Atkinson, A., Banwell, A., Brandon, M., Convey, P., Davies, B., et al. 2019. The Antarctic Peninsula under a 1.5°C global warming scenario. Frontiers in Environmental Science, 7, 102.CrossRefGoogle Scholar
Silva, A.B., Arigony-Neto, J., Braun, M.H., Espinoza, J.M.A., Costi, J. & Jaña, R. 2020. Spatial and temporal analysis of changes in the glaciers of the Antarctic Peninsula. Global and Planetary Change, 184, 103079.CrossRefGoogle Scholar
Smith, B., Fricker, H.A., Gardner, A.S., Medley, B., Nilsson, J., Paolo, F.S., et al. 2020. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science, 368, 12391242.CrossRefGoogle ScholarPubMed
Steig, E.J., Ding, Q., White, J.W., Küttel, M., Rupper, S.B., Neumann, T.A., et al. 2013. Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nature Geoscience, 6, 372375.CrossRefGoogle Scholar
Stammerjohn, S.E., Martinson, D.G., Smith, R.C., Yuan, X. & Rind, D. 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research - Oceans, 113, 10.1029/2007JC004269.CrossRefGoogle Scholar
Swathi, M., Kumar, A. & Mohan, R. 2023. Spatiotemporal evolution of sea ice and its teleconnections with large-scale climate indices over Antarctica. Marine Pollution Bulletin, 188, 114634.CrossRefGoogle ScholarPubMed
Tewari, K., Mishra, S.K., Salunke, P. & Dewan, A. 2022. Future projections of temperature and precipitation for Antarctica. Environmental Research Letters, 17, 014029.CrossRefGoogle Scholar
Thomas, E.R., Van Wessem, J.M., Roberts, J., Isaksson, E., Schlosser, E., Fudge, T.J., et al. 2017. Regional Antarctic snow accumulation over the past 1000 years. Climate of the Past, 13, 14911513.CrossRefGoogle Scholar
Thompson, A.F. 2008. The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366, 45294541.CrossRefGoogle ScholarPubMed
Timmermann, A., An, S.I., Kug, J.S., Jin, F.F., Cai, W., Capotondi, A., et al. 2018. El Niño-Southern Oscillation complexity. Nature, 559, 535545.CrossRefGoogle ScholarPubMed
Trathan, P.N., Fielding, S., Warwick-Evans, V., Freer, J. & Perry, F. 2022. Seabird and seal responses to the physical environment and to spatio-temporal variation in the distribution and abundance of Antarctic krill at South Georgia, with implications for local fisheries management. ICES Journal of Marine Science, 79, 23732388.CrossRefGoogle Scholar
Trimborn, S., Brenneis, T., Hoppe, C.J., Laglera, L.M., Norman, L., Santos-Echeandía, J., et al. 2017. Iron sources alter the response of Southern Ocean phytoplankton to ocean acidification. Marine Ecology Progress Series, 578, 3550.CrossRefGoogle Scholar
Tsujimoto, M., Suzuki, A.C. & Imura, S. 2015. Life history of the Antarctic tardigrade, Acutuncus antarcticus, under a constant laboratory environment. Polar Biology, 38, 15751581.CrossRefGoogle Scholar
Turner, J., Colwell, S.R. & Harangozo, S. 1997. Variability of precipitation over the coastal western Antarctic Peninsula from synoptic observations. Journal of Geophysical Research - Atmospheres, 102, 1399914007.CrossRefGoogle Scholar
Turner, J., Leonard, S., Lachlan-Cope, T. & Marshall, G.J. 1998. Understanding Antarctic Peninsula precipitation distribution and variability using a numerical weather prediction model. Annals of Glaciology, 27, 591596.CrossRefGoogle Scholar
Turner, J., Connolley, W.M., Leonard, S., Marshall, G.J. & Vaughan, D.G. 1999. Spatial and temporal variability of net snow accumulation over the Antarctic from ECMWF re-analysis project data. International Journal of Climatology: A Journal of the Royal Meteorological Society, 19, 697724.3.0.CO;2-3>CrossRefGoogle Scholar
Turner, J., Bindschadler, R., Convey, P., Di Prisco, G., Fahrbach, E., Gutt, J., et al. 2009. Antarctic climate change and the environment. Antarctic Science, 21, 541563.Google Scholar
Turner, J., Colwell, S.R., Marshall, G.J., Lachlan-Cope, T.A., Carleton, A.M., Jones, P.D., et al. 2005. Antarctic climate change during the last 50 years. International journal of Climatology, 25, 279294.CrossRefGoogle Scholar
Turner, J., Hosking, J.S., Bracegirdle, T.J., Marshall, G.J. & Phillips, T. 2015. Recent changes in Antarctic sea ice. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 20140163.CrossRefGoogle ScholarPubMed
Turner, J., Lu, H., White, I., King, J.C., Phillips, T., Hosking, J.S., et al. 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411415.CrossRefGoogle ScholarPubMed
Turner, J., Guarino, M.V., Arnatt, J., Jena, B., Marshall, G.J., Phillips, T., et al. 2020. Recent decrease of summer sea ice in the Weddell Sea, Antarctica. Geophysical Research Letters, 47, e2020GL087127.CrossRefGoogle Scholar
Uppala, S.M., Kållberg, P.W., Simmons, A.J., Andrae, U., Bechtold, V.D.C., Fiorino, M., et al. 2005. The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131, 29613012.CrossRefGoogle Scholar
Van de Berg, W.J., Van den Broeke, M.R., Reijmer, C.H. & Van Meijgaard, E. 2006. Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. Journal of Geophysical Research - Atmospheres, 111: 10.1029/2005JD006495.CrossRefGoogle Scholar
Van den Broeke, M.R. & van Lipzig, N.P. 2004. Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation. Annals of Glaciology, 39, 119126.CrossRefGoogle Scholar
Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., et al. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 243274.CrossRefGoogle Scholar
Verma, S. & Gustafsson, A. 2020. Investigating the emerging COVID-19 research trends in the field of business and management: a bibliometric analysis approach. Journal of Business Research, 118, 253261.CrossRefGoogle ScholarPubMed
Vignon, É., Roussel, M.L., Gorodetskaya, I.V., Genthon, C. & Berne, A. 2021. Present and future of rainfall in Antarctica. Geophysical Research Letters, 48, e2020GL092281.CrossRefGoogle Scholar
Wille, J.D., Favier, V., Gorodetskaya, I.V., Agosta, C., Kittel, C., Beeman, J.C., et al. 2021. Antarctic atmospheric river climatology and precipitation impacts. Journal of Geophysical Research - Atmospheres, 126, e2020JD033788.CrossRefGoogle Scholar
Xu, M., Yu, L., Liang, K., Vihma, T., Bozkurt, D., Hu, X. & Yang, Q. 2021. Dominant role of vertical air flows in the unprecedented warming on the Antarctic Peninsula in February 2020. Communications Earth & Environment, 2, 133.CrossRefGoogle Scholar
Zhang, P. & Duan, A. 2023. Connection between the Tropical Pacific and Indian Ocean and temperature anomaly across west Antarctic. npj Climate and Atmospheric Science, 6, 49.CrossRefGoogle Scholar
Zhu, J.P., Xie, A.H., Qin, X. & Xu, B. 2023a. Assessment of future Antarctic amplification of surface temperature change under different Scenarios from CMIP6. Journal of Mountain Science, 20, 10741089.CrossRefGoogle Scholar
Zhu, J.P., Xie, A.H., Qin, X., Wang, S., Xu, B. & Wang, Y. 2023b. Projection on Antarctic temperature extremes from the CMIP6 multimodel ensemble under different scenarios. Journal of Applied Meteorology and Climatology, 62, 11291146.CrossRefGoogle Scholar
Zwally, H.J., Giovinetto, M.B., Li, J., Cornejo, H.G., Beckley, M.A., Brenner, A.C., et al. 2005. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. Journal of Glaciology, 51, 509527.CrossRefGoogle Scholar