Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T17:18:08.183Z Has data issue: false hasContentIssue false

100 years on: a re-evaluation of the first discovery of microfauna from Ross Island, Antarctica

Published online by Cambridge University Press:  16 March 2018

Alejandro Velasco-Castrillón*
Affiliation:
South Australian Museum, GPO Box 234, Adelaide, SA 5001, Australia School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
Ian Hawes
Affiliation:
Coastal Marine Field Station, University of Waikato, Sulphur Point, Tauranga, New Zealand
Mark I. Stevens
Affiliation:
South Australian Museum, GPO Box 234, Adelaide, SA 5001, Australia School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia

Abstract

Over a century ago microfaunal diversity was first recorded by James Murray in lakes at Cape Royds, Ross Island, Antarctica. The report stands as the seminal study for today’s biodiversity investigations, and as a baseline to evaluate changes in faunal communities and introductions. In the present study, Cape Royds lakes were revisited and the mitochondrial c oxidase subunit I (COI) gene and morphology were used to compare diversity of Rotifera, Tardigrada and Nematoda with the records Murray published in the early 1900s. Cyanobacterial mats and the water column were sampled for microfauna from the five largest lakes using methods described by Murray. Across all five lakes similar patterns were observed for species distribution of all three phyla reported by Murray over 100 years ago. Some changes in species assemblages were identified within and between lakes, but there were no new introductions of named species for the Cape Royds region. Some of the species included by Murray in his monograph have been recently redescribed as Antarctic endemics, but others still retain their original name from the Northern Hemisphere holotypes and are also in need of revision to adequately determine the true endemism for these faunal groups.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, B.J., Bardgett, R.D., Ayres, E., Wall, D.H., Aislabie, J., Bamforth, S., Bargagli, R., Cary, C., Cavacini, P., Connell, L., Convey, P., Fell, J.W., Frati, F., Hogg, I.D., Newsham, K.K., O’Donnell, A., Russell, N., Seppelt, R.D. & Stevens, M.I. 2006. Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 38, 30033018.Google Scholar
Adams, B.J., Wall, D.H., Virginia, R.A., Broos, E. & Knox, M.A. 2014. Ecological biogeography of the terrestrial nematodes of Victoria Land, Antarctica. ZooKeys, 419, 2971.Google Scholar
Altiero, T., Giovannini, I., Guidetti, R. & Rebecchi, L. 2015. Life history traits and reproductive mode of the tardigrade Acutuncus antarcticus under laboratory conditions: strategies to colonize the Antarctic environment. Hydrobiologia, 761, 277291.Google Scholar
Chown, S.L., Huiskes, A.H.L., Gremmen, N.J.M., Lee, J.E., Terauds, A., Crosbie, K., Frenot, Y., Hughes, K.A., Imura, S., Kiefer, K., Lebouvier, M., Raymond, B., Tsujimoto, M., Ware, C., van de Vijver, B. & Bergstrom, D.M. 2012. Continent-wide risk assessment for the establishment of non-indigenous species in Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 10.1073/pnas.1119787109. Google Scholar
Convey, P. & Stevens, M.I. 2007. Antarctic biodiversity. Science, 10.1126/science.1147261.Google Scholar
Czechowski, P., Sands, C.J., Adams, B., D’Haese, C., Gibson, J., McInnes, S.J. & Stevens, M.I. 2012. Antarctic Tardigrada: a first step in understanding molecular operational taxonomic units (MOTUs) and biogeography of cryptic meiofauna. Invertebrate Systematics, 26, 526538.Google Scholar
Dartnall, H.J.G. & Hollowday, E.D. 1985. Antarctic rotifers. BAS Scientific Reports, 100, 146.Google Scholar
Dartnall, H.J.G. 1992. The reproductive strategies of two Antarctic rotifers. Journal of Zoology, 227, 145162.Google Scholar
Dastych, H. 1991. Redescription of Hypsibius antarcticus (Richters, 1904), with some notes on Hypsibius arcticus (Murray, 1907) (Tardigrada). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 88, 141159.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294299.Google Scholar
Fontaneto, D., Barraclough, T.G., Chen, K., Ricci, C. & Herniou, E.A. 2008. Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread. Molecular Ecology, 10.1111/j.1365-294X.2008.03806.x. Google Scholar
Fontaneto, D., Iakovenko, N., Eyres, I., Kaya, M., Wyman, M. & Barraclough, T.G. 2011. Cryptic diversity in the genus Adineta Hudson & Gosse, 1886 (Rotifera: Bdelloidea: Adinetidae): a DNA taxonomy approach. Hydrobiologia, 10.1007/s10750-010-0481-7.Google Scholar
Hills, S.F.K., Stevens, M.I. & Gemmill, C.E.C. 2010. Molecular support for Pleistocene persistence of the continental Antarctic moss Bryum argenteum . Antarctic Science, 22, 721726.Google Scholar
Houghton, M., McQuillan, P.B., Bergstrom, D.M., Frost, L., van den Hoff, J. & Shaw, J. 2016. Pathways of alien invertebrate transfer to the Antarctic region. Polar Biology, 10.1007/s00300-014-1599-2.Google Scholar
Hughes, K.A., Pertierra, L.R., Molina-Montenegro, M.A. & Convey, P. 2015. Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodiversity and Conservation, 10.1007/s10531-015-0896-6.Google Scholar
Iakovenko, N.S., Smykla, J., Convey, P., Kašparová, E., Kozeretska, I.A., Trokhymets, V., Dykyy, I., Plewka, M., Devetter, M., Duriš, Z. & Janko, K. 2015. Antarctic bdelloid rotifers: diversity, endemism and evolution. Hydrobiologia, 10.1007/s10750-015-2463-2.Google Scholar
Kumar, S., Stecher, G. & Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 18701874.Google Scholar
McGaughran, A., Stevens, M.I. & Holland, B.R. 2010a. Biogeography of circum-Antarctic springtails. Molecular Phylogenetics and Evolution, 10.1016/j.ympev.2010.06.003. Google Scholar
McGaughran, A., Torricelli, G., Carapelli, A., Frati, F., Stevens, M.I., Convey, P. & Hogg, I. 2010b. Contrasting phylogeographical patterns for springtails reflect different evolutionary histories between the Antarctic Peninsula and Continental Antarctica. Journal of Biogeography, 37, 103119.Google Scholar
McGeoch, M.A., Shaw, J.D., Terauds, A., Lee, J.E. & Chown, S.L. 2015. Monitoring biological invasion across the broader Antarctic: a baseline and indicator framework. Global Environmental Change - Human and Policy Dimensions, 10.1016/j.gloenvcha.2014.12.012.Google Scholar
Murray, J. 1907. Arctic Tardigrada. Transactions of the Royal Society of Edinburgh, 45, 669681.Google Scholar
Murray, J. 1910. Biology. British Antarctic Expedition 1907–9, under the command of Sir E.H. Shackleton . Reports on the scientific investigations, 1, 1105.Google Scholar
Nolan, L., Hogg, I.D., Stevens, M.I. & Haase, M. 2006. Fine scale distribution of mtDNA haplotypes for the springtail Gomphiocephalus hodgsoni (Collembola) corresponds to an ancient shoreline in Taylor Valley, Continental Antarctica. Polar Biology, 10.1007/s00300-006-0119-4.Google Scholar
O’Neill, T.A., Balks, M.R. & López-Martínez, J. 2015. Ross Island recreational walking tracks: relationships between soil physiochemical properties and track usage. Polar Record, 10.1017/S0032247414000400.Google Scholar
Porazinska, D.L., Fountain, A.G., Nylen, T.H., Tranter, M., Virginia, R.A. & Wall, D.H. 2004. The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic, Antarctic and Alpine Research, 36, 8491.Google Scholar
Posada, D. & Crandall, K.A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817818.Google Scholar
Raymond, M.R., Wharton, D.A. & Marshall, C.J. 2014. Nematodes from the Victoria Land coast, Antarctica and comparisons with cultured Panagrolaimus davidi . Antarctic Science, 26, 1522.Google Scholar
Smykla, J., Iakovenko, N., Devetter, M. & Kaczmarek, Ł. 2012. Diversity and distribution of tardigrades in soils of Edmonson Point (northern Victoria Land, Continental Antarctica). Czech Polar Reports, 2, 6170.Google Scholar
Sohlenius, B. & Boström, S. 2008. Species diversity and random distribution of microfauna in extremely isolated habitable patches on Antarctic nunataks. Polar Biology, 10.1007/s00300-008-0420-5.Google Scholar
Stevens, M.I. & Hogg, I.D. 2003. Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica. Molecular Ecology, 10.1046/j.1365-294X.2003.01907.x. Google Scholar
Stevens, M.I. & Hogg, I.D. 2006. The molecular ecology of Antarctic terrestrial and limnetic invertebrates and microbes. In Bergstrom, D.M., Convey, P. & Huiskes, A.H.L., eds. Trends in Antarctic terrestrial and limnetic ecosystems. Dordrecht: Springer Netherlands, 177192.Google Scholar
Swofford, D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (and other methods), version 4.0 a152. Sunderland, MA: Sinauer Associates.Google Scholar
Terauds, A., Chown, S.L., Morgan, F., Peat, H.J., Watts, D.J., Keys, H., Convey, P. & Bergstrom, D.M. 2012. Conservation biogeography of the Antarctic. Diversity and Distributions, 18, 726741.Google Scholar
Tsujimoto, M., Komori, O. & Imura, S. 2016. Effect of lifespan and age on reproductive performance of the tardigrade Acutuncus antarcticus: minimal reproductive senescence. Hydrobiologia, 772, 93102.Google Scholar
Velasco-Castrillón, A. & Stevens, M.I. 2014. Morphological and molecular diversity at a regional scale: a step closer to understanding Antarctic nematode biogeography. Soil Biology and Biochemistry, 70, 272284.Google Scholar
Velasco-Castrillón, A., Gibson, J.A. & Stevens, M.I. 2014a. A review of current Antarctic limno-terrestrial microfauna. Polar Biology, 37, 15171531.Google Scholar
Velasco-Castrillón, A., Page, T.J., Gibson, J.A. & Stevens, M.I. 2014b. Surprisingly high levels of biodiversity and endemism amongst Antarctic rotifers uncovered with mitochondrial DNA. Biodiversity, 15, 130142.Google Scholar
Velasco-Castrillón, A., Schultz, M.B., Colombo, F., Gibson, J.A.E., Davies, K.A., Austin, A.D. & Stevens, M.I. 2014c. Distribution and diversity of soil microfauna from East Antarctica: assessing the link between biotic and abiotic factors. PLoS ONE, 10.1371/journal.pone.0087529. Google Scholar
Velasco-Castrillón, A., McInnes, S.J., Schultz, M.B., Arróniz-Crespo, M., D’Haese, C.A., Gibson, J.A.E., Adams, B.J., Page, T.J., Austin, A.D., Cooper, S.J.B. & Stevens, M.I. 2015. Mitochondrial DNA analyses reveal widespread tardigrade diversity in Antarctica. Invertebrate Systematics, 10.1071/IS14019. Google Scholar
Woehler, E.J., Ainley, D. & Jabour, J. 2014. Human impacts to Antarctic wildlife: predictions and speculations for 2060. In Tin, T., Liggett, D., Maher, P.T. & Lamers, M., eds. Antarctic futures: human engagement with the Antarctic environment. Dordrecht: Springer Netherlands, 2760.Google Scholar
Supplementary material: PDF

Velasco-Castrillón et al. supplementary material

Appendix S1 and Table S1

Download Velasco-Castrillón et al. supplementary material(PDF)
PDF 39 KB